Home
Prev
Next
List Of Genus One Curves Of Low Degree
In this section we compute addition formulae for cubic, biquadratic and quartic elliptic curves based on monomial
basis sequences.
Some points to note
- This list is not exhaustive, for example some curves which arise from simple inversions $x \rightarrow 1/x$ of
listed curves are not included.
-
Invariant under differentiated Möbius transformations means the family as a whole is invariant under the birational transformation
$(x,y) \rightarrow(L(x),yL'(x))$ where $L$ is a Möbius transformation.
-
Invariance under Möbius transformations implies the $g_2, g_3$ and $j$ invariants of the curve can be expressed in terms of the binary invariants of the coefficient polynomials.
Simple Cubic Curve
-
Differential equation for an order 2 elliptic function with a double pole
\begin{equation} \label{eq:simple_cubic_curv}
y^2 \enspace = \enspace ax^3 \space + \space bx^2 \space + cx \space + \space d
\end{equation}
-
Notable reduced form $\enspace y^2 = 4x^3 - g_2 x - g_3\enspace $
- Monomial basis sequence $\enspace 1,x, y, x^2, xy, x^2y \enspace \ldots$
- Interpolating curves are straight lines
Simple Quartic Curve
-
Differential equation for a general order 2 elliptic function
\begin{equation} \label{eq:simple_quartic_curve}
y^2 \enspace = \enspace ax^4 \space + \space bx^3 \space + cx^2 \space + \space dx \space + \space e
\end{equation}
- Invariant under differentiated Möbius transformations
- Monomial basis sequence $1, x, x^2, y, \quad x^3, xy, \quad x^4, x^2y \quad \ldots$
- Interpolating curves are parabola's
Scwharz-Christoffel 3-Symmetry Curve
-
Differential equation for an order 3 elliptic function with three-fold symmetry
\begin{equation} \label{eq:sc_curve_3}
y^3 \enspace = \enspace \left(ax^3 \space + \space bx^2 \space + \space cx \space + \space d \right)^2
\end{equation}
- Invariant under differentiated Möbius transformations
Scwharz-Christoffel 4-Symmetry Curve
-
Differential equation for an order 4 elliptic function with four-fold symmetry
\begin{equation} \label{eq:sc_curve_4}
y^4 \enspace = \enspace \left(ax \space + \space b\right)^2 \left(px^2 \space + \space qx \space + \space r \right)^3
\end{equation}
- Invariant under differentiated Möbius transformations
Scwharz-Christoffel 6-Symmetry Curve
-
Differential equation for an order 6 elliptic function with six-fold symmetry
\begin{equation} \label{eq:sc_curve_6}
y^6 \enspace = \enspace \left(ax \space + \space b\right)^3 \left(cx \space + \space d \right)^4 \left(ex \space + \space f \right)^5
\end{equation}
- Invariant under differentiated Möbius transformations
Sextic Curve
-
Differential equation for a general order 3 elliptic function
\begin{equation} \label{eq:sextic_curve}
y^3 \enspace + \enspace \left(ax^2 \space + \space bx \space + \space c \right)y^2 \enspace + \enspace
\left(px^3 \space + \space qx^2 \space + \space rx \space + \space s \right)^2
\enspace - \enspace \tfrac {4} {27} \left(ax^2 \space + \space bx \space + \space c \right)^3 \enspace = \enspace 0
\end{equation}
- Invariant under differentiated Möbius transformations
Cubic Curve
-
Algebraic relation between two order 3 elliptic functions with the same poles
\begin{equation} \label{eq:cubic_curve}
py^3 \enspace + \enspace \left(qx \space + \space r\right)y^2 \enspace + \enspace
\left(sx^2 \space + \space tx \space + \space u\right)y \enspace + \enspace
\left(a x^3 \space + \space b x^2 \space + \space c x \space + \space d\right) \enspace = \enspace 0
\end{equation}
- Invariant under joint linear fractional transformations - and therefore the $g_2$ and $g_3$ invariants can be expressed in terms of the ternary invariants of the homogenised equation
- Monomial basis sequence $ \enspace 1, x, y, \quad x^2, xy, y^2, \quad x^3, x^2y, xy^2, \quad x^4, x^3y, x^2y^2 \enspace \ldots$
- Interpolating curves are straight lines
Biquadratic Curve
-
Algebraic relation between two general order 2 elliptic functions
\begin{equation} \label{eq:biquadratic_curve}
\left(px^2 \space + \space qx \space + \space r\right)y^2 \enspace + \enspace \left(sx^2 \space + \space tx \space +
\space u\right)y \enspace + \enspace
\left(ax^2 \space + \space bx \space + \space c\right) \enspace = \enspace 0
\end{equation}
- Invariant under Möbius transformations.
- Monomial basis sequence $ \enspace 1, x, y, xy, \quad x^2, x^2y, xy^2, y^2, \quad x^3,x^3y,xy^3,y^3, \quad x^4,x^4y,xy^4,y^4 \enspace \ldots$
- Interpolating curves are hyperbola's
General Quartic Curve
-
Algebraic relation between a general order 2 elliptic function with two single poles and an order 4 elliptic
function with two double poles at same location.
\begin{equation} \label{eq:quartic_curve}
hy^2 \enspace + \enspace \left(px^2 \space + \space qx \space + \space r\right)y \enspace + \enspace
\left(a x^4 \space + \space b x^3 \space + \space c x^2 \space + \space d x \space + \space e\right) \enspace = \enspace 0
\end{equation}
- Invariant under differentiated Möbius transformations.
- Monomial basis sequence $ \enspace 1, x, x^2, y, \quad x^3, xy, \quad x^4, x^2y \enspace \ldots$
- Interpolating curves are parabola's
Legendre Curve
-
Differential equation for order 2 elliptic functions which are perfect squares
\begin{equation} \label{eq:legendre_curve}
y^2 \enspace = \enspace ax^3 \space + \space bx^2 \space + \space cx
\end{equation}
- Notable reduced form $ \enspace y^2 = x(x-1)(x-\lambda) \enspace$
Euler Curve
-
Differential equation for order 2 elliptic functions with even-odd symmetry
\begin{equation} \label{eq:euler_curve}
y^2 \enspace = \enspace ax^4 \space + \space bx^2 \space + \space c
\end{equation}
- Notable reduced forms $\displaystyle \qquad \begin{eqnarray*} y^2 & = & (1 - x^2)(1 - k^2 x^2) \\[6px] y^2 & = & (x^2 - \alpha^2)(x^2 - \alpha^{-2}) \end{eqnarray*}$
Edwards Curve
-
Algebraic relation between two order 2 elliptic functions with even-odd symmetry, one with even symmetry and the other with odd symmetry
\begin{equation} \label{eq:edwards_curve}
a x^2y^2 \enspace + \enspace b x^2 \enspace + \enspace c y^2 \enspace + \enspace d \enspace = \enspace 0
\end{equation}
-
Notable reduced form $ \enspace x^2 + y^2 = 1 + k^2 x^2 y^2 \enspace$
Hofstadter Curve
-
Algebraic relation between two order 2 elliptic functions with even-odd symmetry, both with odd symmetry
\begin{equation} \label{eq:hofstadter_curve}
a x^2y \enspace + \enspace b xy^2 \enspace + \enspace c x \enspace + \enspace d y \enspace = \enspace 0
\end{equation}
-
Notable reduced form $ \displaystyle \enspace y + \frac 1 y = \sqrt{\lambda} \left(x + \frac 1 x \right) \enspace$
Hesse Curve
-
Algebraic relation between two order 3 elliptic functions with triple symmetry and same poles
\begin{equation} \label{eq:hesse_curve}
ax^3 \enspace + \enspace by^3 \enspace + \enspace c \enspace + \enspace dxy \enspace = \enspace 0
\end{equation}
- The symmetries in this curve are more obvious when written in homogenous form
Monomial Basis Sequence
Every elliptic curve is uniformised by a pair of elliptic functions say $f$ and $g$.
A monomial basis sequence is a sequence of monomials in $f$ and $g$ which span the vector space of elliptic
functions with the same poles as $f$ and $g$ up to a certain order $n$.
If the family of curves has a natural sequence of monomial bases then
- Each basis implies a Frobenius-Stickelberger style symmetric addition formula.
- It also implies an Abelian style family of interpolating curves.
- Elimination between an elliptic curve and an interpolating curve yields an explicit addition formula.
- This formula is roughly speaking the ratio of two resultants.
For example the curve \eqref{eq:simple_quartic_curve}.
The pair of uniformising elliptic functions are $f$ and $f'$ where $f(z)$ is any non-trivial solution of the differential equation
\begin{equation*}
f'(z)^2 \enspace = \enspace a f(z)^4 \space + \space b f(z)^3 \space + \space c f(z)^2 \space + \space d f(z) \space + \space e
\end{equation*}
The monomial basis sequence is
\begin{equation*}
1, \space x, \space x^2, \space y, \space x^3, \space x^2y \space \ldots
\end{equation*}
The first non-trivial Frobenius-Stickelberger style symmetric addition formula is
\begin{equation*}
\begin{vmatrix}
1 & f(z_1) & f(z_1)^2 & f'(z_1) \\
1 & f(z_2) & f(z_2)^2 & f'(z_2) \\
1 & f(z_3) & f(z_3)^2 & f'(z_3) \\
1 & f(z_4) & f(z_4)^2 & f'(z_4) \\
\end{vmatrix} \enspace = \enspace \frac {2 \thinspace \sigma^4(\rho_1 - \rho_2)} {a^2} \cdot
\frac {\sigma\big(z_1 + z_2 + z_3 + z_4 - 2(\rho_1 + \rho_2)\big) \prod_\limits{i \lt j}\sigma(z_i - z_j)}
{\prod\limits_{i=1}^4 \sigma^2(z_i - \rho_1) \sigma^2(z_i - \rho_2)}
\end{equation*}
where $\rho_1$ and $\rho_2$ are the poles of $f$.
The interpolating curves are parabola's of the form
\begin{equation*}
A \space + \space Bx \space + \space Cx^2 \space + \space Dy \enspace = \enspace 0
\end{equation*}
The two variable "ratio of resultants" addition formula for $f(z)$ is
\begin{equation*}
f(u + v) \enspace = \enspace \frac 1 {f(u) f(v) f(0)}
\frac {\begin{vmatrix}
1 & f(u) & f(u)^2 & f'(u) \\
1 & f(v) & f(v)^2 & f'(v) \\
1 & f(0) & f(0)^2 & -f'(0) \\
1 & 0 & 0 & \sqrt{e} \\
\end{vmatrix} \space
\begin{vmatrix}
1 & f(u) & f(u)^2 & f'(u) \\
1 & f(v) & f(v)^2 & f'(v) \\
1 & f(0) & f(0)^2 & -f'(0) \\
1 & 0 & 0 & -\sqrt{e} \\
\end{vmatrix}}
{\begin{vmatrix}
1 & f(u) & f(u)^2 & f'(u) \\
1 & f(v) & f(v)^2 & f'(v) \\
1 & f(0) & f(0)^2 & -f'(0) \\
0 & 0 & 1 & \sqrt{a} \\
\end{vmatrix} \space
\begin{vmatrix}
1 & f(u) & f(u)^2 & f'(u) \\
1 & f(v) & f(v)^2 & f'(v) \\
1 & f(0) & f(0)^2 & -f'(0) \\
0 & 0 & 1 & -\sqrt{a} \\
\end{vmatrix}}
\end{equation*}
and for $f'(z)$ it is
\begin{equation*}
f'(u + v) \enspace = \enspace \frac {a^2} {f'(u) f'(v) f'(0)}
\frac {
\begin{vmatrix}
1 & f(u) & f(u)^2 & f'(u) \\
1 & f(v) & f(v)^2 & f'(v) \\
1 & f(0) & f(0)^2 & -f'(0) \\
1 & e_1 & e_1^2 & 0 \\
\end{vmatrix} \space
\begin{vmatrix}
1 & f(u) & f(u)^2 & f'(u) \\
1 & f(v) & f(v)^2 & f'(v) \\
1 & f(0) & f(0)^2 & -f'(0) \\
1 & e_2 & e_2^2 & 0 \\
\end{vmatrix} \space
\begin{vmatrix}
1 & f(u) & f(u)^2 & f'(u) \\
1 & f(v) & f(v)^2 & f'(v) \\
1 & f(0) & f(0)^2 & -f'(0) \\
1 & e_3 & e_3^2 & 0 \\
\end{vmatrix} \space
\begin{vmatrix}
1 & f(u) & f(u)^2 & f'(u) \\
1 & f(v) & f(v)^2 & f'(v) \\
1 & f(0) & f(0)^2 & -f'(0) \\
1 & e_4 & e_4^2 & 0 \\
\end{vmatrix} }
{\begin{vmatrix}
1 & f(u) & f(u)^2 & f'(u) \\
1 & f(v) & f(v)^2 & f'(v) \\
1 & f(0) & f(0)^2 & -f'(0) \\
0 & 0 & 1 & \sqrt{a} \\
\end{vmatrix}^2 \space
\begin{vmatrix}
1 & f(u) & f(u)^2 & f'(u) \\
1 & f(v) & f(v)^2 & f'(v) \\
1 & f(0) & f(0)^2 & -f'(0) \\
0 & 0 & 1 & -\sqrt{a} \\
\end{vmatrix}^2}
\end{equation*}
where $e_1,e_2,e_3,e_4$ are the four roots of the right-hand side of \eqref{eq:simple_quartic_curve}.