Home Powered by MathJax

List Of Genus One Curves Of Low Degree

In this section we compute addition formulae for cubic, biquadratic and quartic elliptic curves based on monomial basis sequences.

Some points to note

Simple Cubic Curve

Simple Quartic Curve

Scwharz-Christoffel 3-Symmetry Curve

Scwharz-Christoffel 4-Symmetry Curve

Scwharz-Christoffel 6-Symmetry Curve


Sextic Curve

Cubic Curve

Biquadratic Curve

General Quartic Curve

Legendre Curve

Euler Curve

Edwards Curve

Hofstadter Curve

Hesse Curve

Monomial Basis Sequence

Every elliptic curve is uniformised by a pair of elliptic functions say $f$ and $g$. A monomial basis sequence is a sequence of monomials in $f$ and $g$ which span the vector space of elliptic functions with the same poles as $f$ and $g$ up to a certain order $n$. If the family of curves has a natural sequence of monomial bases then

For example the curve \eqref{eq:simple_quartic_curve}. The pair of uniformising elliptic functions are $f$ and $f'$ where $f(z)$ is any non-trivial solution of the differential equation \begin{equation*} f'(z)^2 \enspace = \enspace a f(z)^4 \space + \space b f(z)^3 \space + \space c f(z)^2 \space + \space d f(z) \space + \space e \end{equation*} The monomial basis sequence is \begin{equation*} 1, \space x, \space x^2, \space y, \space x^3, \space x^2y \space \ldots \end{equation*} The first non-trivial Frobenius-Stickelberger style symmetric addition formula is \begin{equation*} \begin{vmatrix} 1 & f(z_1) & f(z_1)^2 & f'(z_1) \\ 1 & f(z_2) & f(z_2)^2 & f'(z_2) \\ 1 & f(z_3) & f(z_3)^2 & f'(z_3) \\ 1 & f(z_4) & f(z_4)^2 & f'(z_4) \\ \end{vmatrix} \enspace = \enspace \frac {2 \thinspace \sigma^4(\rho_1 - \rho_2)} {a^2} \cdot \frac {\sigma\big(z_1 + z_2 + z_3 + z_4 - 2(\rho_1 + \rho_2)\big) \prod_\limits{i \lt j}\sigma(z_i - z_j)} {\prod\limits_{i=1}^4 \sigma^2(z_i - \rho_1) \sigma^2(z_i - \rho_2)} \end{equation*} where $\rho_1$ and $\rho_2$ are the poles of $f$.

The interpolating curves are parabola's of the form \begin{equation*} A \space + \space Bx \space + \space Cx^2 \space + \space Dy \enspace = \enspace 0 \end{equation*} The two variable "ratio of resultants" addition formula for $f(z)$ is \begin{equation*} f(u + v) \enspace = \enspace \frac 1 {f(u) f(v) f(0)} \frac {\begin{vmatrix} 1 & f(u) & f(u)^2 & f'(u) \\ 1 & f(v) & f(v)^2 & f'(v) \\ 1 & f(0) & f(0)^2 & -f'(0) \\ 1 & 0 & 0 & \sqrt{e} \\ \end{vmatrix} \space \begin{vmatrix} 1 & f(u) & f(u)^2 & f'(u) \\ 1 & f(v) & f(v)^2 & f'(v) \\ 1 & f(0) & f(0)^2 & -f'(0) \\ 1 & 0 & 0 & -\sqrt{e} \\ \end{vmatrix}} {\begin{vmatrix} 1 & f(u) & f(u)^2 & f'(u) \\ 1 & f(v) & f(v)^2 & f'(v) \\ 1 & f(0) & f(0)^2 & -f'(0) \\ 0 & 0 & 1 & \sqrt{a} \\ \end{vmatrix} \space \begin{vmatrix} 1 & f(u) & f(u)^2 & f'(u) \\ 1 & f(v) & f(v)^2 & f'(v) \\ 1 & f(0) & f(0)^2 & -f'(0) \\ 0 & 0 & 1 & -\sqrt{a} \\ \end{vmatrix}} \end{equation*} and for $f'(z)$ it is \begin{equation*} f'(u + v) \enspace = \enspace \frac {a^2} {f'(u) f'(v) f'(0)} \frac { \begin{vmatrix} 1 & f(u) & f(u)^2 & f'(u) \\ 1 & f(v) & f(v)^2 & f'(v) \\ 1 & f(0) & f(0)^2 & -f'(0) \\ 1 & e_1 & e_1^2 & 0 \\ \end{vmatrix} \space \begin{vmatrix} 1 & f(u) & f(u)^2 & f'(u) \\ 1 & f(v) & f(v)^2 & f'(v) \\ 1 & f(0) & f(0)^2 & -f'(0) \\ 1 & e_2 & e_2^2 & 0 \\ \end{vmatrix} \space \begin{vmatrix} 1 & f(u) & f(u)^2 & f'(u) \\ 1 & f(v) & f(v)^2 & f'(v) \\ 1 & f(0) & f(0)^2 & -f'(0) \\ 1 & e_3 & e_3^2 & 0 \\ \end{vmatrix} \space \begin{vmatrix} 1 & f(u) & f(u)^2 & f'(u) \\ 1 & f(v) & f(v)^2 & f'(v) \\ 1 & f(0) & f(0)^2 & -f'(0) \\ 1 & e_4 & e_4^2 & 0 \\ \end{vmatrix} } {\begin{vmatrix} 1 & f(u) & f(u)^2 & f'(u) \\ 1 & f(v) & f(v)^2 & f'(v) \\ 1 & f(0) & f(0)^2 & -f'(0) \\ 0 & 0 & 1 & \sqrt{a} \\ \end{vmatrix}^2 \space \begin{vmatrix} 1 & f(u) & f(u)^2 & f'(u) \\ 1 & f(v) & f(v)^2 & f'(v) \\ 1 & f(0) & f(0)^2 & -f'(0) \\ 0 & 0 & 1 & -\sqrt{a} \\ \end{vmatrix}^2} \end{equation*} where $e_1,e_2,e_3,e_4$ are the four roots of the right-hand side of \eqref{eq:simple_quartic_curve}.