In this section we look at order 2 elliptic functions in which both zeros and poles are at half-period lattice points. This is closely related to reducing order 2 functions to special forms and to special cases of various curves.
In this section we use the following nomenclature and definitions
Summary Of Results
When the zeroes and poles of order 2 elliptic functions align with the half-period grid they gain additional symmetries.
Formulae For Perfect Squares
There are three distinct lattice aligned, perfect square order 2 elliptic functions with a pole at zero. In terms of sigma products they are given by \begin{equation} \label{eq:perfect_sigma} \frac {\sigma(z - \omega_1)\sigma(z + \omega_1)} {\sigma^2(z)}, \qquad\qquad \frac {\sigma(z - \omega_2)\sigma(z + \omega_2)} {\sigma^2(z)}, \qquad\qquad \frac {\sigma(z - \omega_3)\sigma(z + \omega_3)} {\sigma^2(z)} \end{equation} In terms of Weierstrass $\wp$ they may be written
In terms of any order 2 elliptic function $f$ they may be written \begin{equation} \label{eq:square_f} \frac {f(z) - e_1} {f(z) - e_4}, \qquad\qquad \frac {f(z) - e_2} {f(z) - e_4}, \qquad\qquad \frac {f(z) - e_3} {f(z) - e_4} \end{equation}
Differential Equation For Perfect Squares
Equations \eqref{eq:square_wp} and \eqref{eq:square_f} are simply Möbius transforms moving one root to zero and one to infinity. This is the Möbius transformation that puts their differential equation into Legendre form. That is \begin{equation} \label{eq:legendre-form} g(z) \enspace = \enspace \frac {f(z) - e_1} {f(z) - e_4} \qquad\implies\qquad g'(z)^2 \enspace = \enspace a g^3(z) \enspace + \enspace b g^2(z) \enspace + \enspace c g(z) \qquad\qquad g(0) = \infty \end{equation} Therefore an order 2 elliptic function is a perfect square if and only if it is a solution of the Legendre differential equation.
Sigma Product For Order 2 Elliptic Function With Odd Symmetry
Every odd order 2 elliptic function $\phi$ with a zero at the origin has (up to a multiplicative constant) the form
\begin{equation} \label{eq:odd_sigma} \phi(z) \enspace = \enspace \frac {\sigma(z) \thinspace \sigma(z - \omega_1)} {\sigma(z+\omega_2) \thinspace \sigma(z+\omega_3)} \end{equation}
Since it is an odd function of order two it must have a simple zero at $z=0$ and have a $\sigma$ product of the form \begin{equation*} \phi(z) \enspace = \enspace \frac {\sigma(z) \thinspace \sigma(z - \mu)} {\sigma(z-\rho_1) \thinspace \sigma(z-\rho_2)} \end{equation*} But because of odd symmetry both $\mu$ and $-\mu$ must be zeroes of $\phi$, and since there can only be two zeroes in total, we must have \begin{equation*} \mu \enspace \equiv \enspace -\mu \mod \left[2\omega_1,2\omega_2\right] \qquad\qquad \textsf{and} \qquad\qquad \mu \enspace \not\equiv \enspace 0 \mod \left[2\omega_1,2\omega_2\right] \end{equation*} which implies $\mu$ is one of the half-periods $\omega_1,\omega_2,\omega_3$ where $\omega_1 + \omega_2 + \omega_3 = 0$. The two poles $\rho_1, \rho_2$ cannot be a distinct $\pm$ pair, because then sum of zeroes would not equal the sum of poles. So they must also satisfy a similar condition and be the other two half-periods. The plus signs are required in the denominator to ensure that the sum of the zeroes equals the sum of the poles.
To show that \eqref{eq:odd_sigma} is an odd function, use the pseudo-periodicity formula $\sigma(z+\omega_i) = -e^{2\eta_i z}\sigma(z - \omega_i)$ to give \begin{equation*} \phi(-z) \enspace = \enspace \frac {\sigma(z) \thinspace \sigma(z + \omega_1)} {\sigma(z - \omega_2) \thinspace \sigma(z - \omega_3)} \enspace = \enspace \frac {\sigma(z) \thinspace (-1) e^{2\eta_1 z} \sigma(z - \omega_1)} {(-1) e^{-2\eta_2 z}\sigma(z + \omega_2) \thinspace (-1) e^{-2\eta_3 z} \sigma(z + \omega_3)} \enspace = \enspace (-1)^3 e^{2(\eta_1+\eta_2+\eta_3)z} \phi(z) \enspace = \enspace -\phi(z) \end{equation*}
If instead $\phi$ has a simple pole at zero, it's reciprocal must have form \eqref{eq:odd_sigma}. Therefore, up to a multiplicative constant and taking reciprocals, there are just three odd order 2 elliptic functions on the period lattice $\left[2\omega_1,2\omega_2\right]$. They are the three functions obtained by permuting $\omega_1,\omega_2,\omega_3$ in \eqref{eq:odd_sigma}.
Locations Of Centre's Of Odd Symmetry
Translating \eqref{eq:odd_sigma} by half-periods and utilising the pseudo-periodicity formula for $\sigma$ gives
\begin{equation} \label{eq:odd_shift} \phi(z + \omega_1) \space = \space -\phi(z) \qquad\qquad \textsf{and} \qquad\qquad \phi(z + \omega_2) \space = \space e^{2\eta_2\omega_3} \frac 1 {\phi(z)} \qquad\qquad \textsf{and} \qquad\qquad \phi(z + \omega_3) \space = \space e^{2\eta_3\omega_2} \frac 1 {\phi(z)} \end{equation}
The first is equivalent to odd symmetry \begin{equation*} \phi(z + \omega_1) \enspace = \enspace \frac {\sigma(z + \omega_1) \sigma(z)} {\sigma(z - \omega_3) \sigma(z - \omega_2)} \enspace = \enspace \phi(-z) \enspace = \enspace -\phi(z) \end{equation*} The second can be deduced using the pseudo periodicity formula for $\sigma(z)$ \begin{equation*} \phi(z + \omega_2) \enspace = \enspace \frac {\sigma(z + \omega_2) \sigma(z + \omega_3 + 2\omega_2)} {\sigma(z + 2\omega_2) \sigma(z - \omega_1)} \enspace = \enspace \frac {\sigma(z + \omega_2) (-1)e^{2\eta_2(z+\omega_3+\omega_2)} \sigma(z + \omega_3)} {(-1) e^{2\eta_2 (z + \omega_2)}\sigma(z) \sigma(z - \omega_1)} \enspace = \enspace e^{2\eta_2\omega_3} \frac 1 {\phi(z)} \end{equation*} and the third one follows by swapping $2 \leftrightarrow 3$ in the above formula.
Therefore there are three other centres of odd symmetry lying on the half-period grid, relative to $\phi(z)$.
NOTES
Determining Other Two Distinct Odd Elliptic Functions From Given One
If $\phi$ is an odd order 2 elliptic function on the lattice $[2\omega_1, 2\omega_2]$, with zeroes at $0, \omega_1$, then the three distinct odd order 2 elliptic functions $\phi_i$ with zeroes at $0, \omega_i$ are given by the formula
\begin{equation} \label{eq:odd_from_odd} \phi_i(z) \enspace = \enspace \phi(z) \space + \space \residue(\phi,\omega_i) \cdot \frac {\phi'(z) - \phi'(0)} {\phi(z)} \qquad \textsf{for} \qquad i=1,2,3 \end{equation}
Because $\phi(z)$ has simple zeroes at $0, \omega_1$ it has simple poles at $\omega_2, \omega_3$. This implies $\phi'(z) - \phi'(0)$ is even with double zero at $0$ and two double poles at $\omega_2, \omega_3$. This in turn implies $\left[\phi'(z) - \phi'(0)\right]/\phi(z)$ is odd with simple zero at $0$ and three simple poles at $\omega_1, \omega_2, \omega_3$.
From the power series expansion $\phi(z) = \residue(\phi,\omega_2)(z-\omega_2)^{-1} + \bigO(z-\omega_2)$ we can deduce $\left[\phi'(z) - \phi(0)\right]/\phi(z) = -1.(z-\omega_2)^{-1} + \bigO(z-\omega_2)$. This implies $\phi(z) + \residue(\phi,\omega_2).\left[\phi'(z) - \phi(0)\right]/\phi(z)$ is odd with simple zero at 0 and two simple poles at $\omega_1, \omega_3$ because the pole at $\omega_2$ is cancelled out.
It then follows that \eqref{eq:odd_from_odd} is true for $i=2$ and a similar power series expansion shows it is true for $i=3$. And since $\residue(\phi,\omega_1)=0$ it is true for $i=1$ as well.
The most well known odd order 2 elliptic function is the Jacobi elliptic function $\sn(z)$. Applying \eqref{eq:odd_from_odd} to this function gives the other two distinct odd order 2 elliptic functions on the lattice $[4K, 2iK']$, with a zero at $z=0$, as
\begin{equation} \sn(z) \enspace \pm \enspace \frac {\cn(z)\dn(z) \space - \space 1} {k\sn(z)} \end{equation}
Put $\phi(z) = \sn(z)$ so then $\omega_1 = 2K$ and $\omega_2 = iK'$.
Also $\phi'(z) = \cn(z)\dn(z)$ and $\phi'(0) = \cn(0)\dn(0) = 1$.
And $\residue(\phi, \omega_2) = \residue(\sn, iK') = 1/k$ so $\residue(\phi, \omega_3) = -1/k$.
The result follows by substituting these values into \eqref{eq:odd_from_odd}.
Differential Equation For Odd Order 2 Elliptic Functions
While every order 2 elliptic function has four centre's of even symmetry, it has in general has no centre of odd symmetry.
A necessary and sufficient condition for a non-trivial order 2 elliptic function $\phi$ to have odd symmetry is that it satisfies a differential equation of the form
To show necessity note that since $\phi$ is order 2 it satisfies a differential equation of the form $\phi'^2 = A \phi^4 + B \phi^3 + C \phi^2 + D \phi + E$. By mapping $z \rightarrow -z$ we see that since $\phi(-z)=-\phi(z)$ it also satisfies the differential equation $\phi'^2 = A \phi^4 - B \phi^3 + C \phi^2 - D \phi + E$. As $\phi$ is not a constant, the only way this can happen is if $B = D = 0$.
To show sufficiency, under the boundary condition $\phi(0)=0$, use induction to get polynomials $P_n$ and $Q_n$ such that \begin{equation*} \phi^{[2n]}(z) \space = \space \phi(z) \cdot P_n\left(\phi^2(z)\right) \qquad \textsf{and} \qquad \phi^{[2n+1]}(z) = \phi'(z) \cdot Q_n\left(\phi^2(z)\right) \qquad \textsf{for} \qquad n \ge 0 \end{equation*} This implies that when $\phi(0) = 0$, all the even derivatives $\phi^{[2n]}(0)$ vanish and that therefore $\phi(z)$ is an odd function.
In more detail the inductive steps are compute $\phi''$ by differentiating \eqref{eq:euler_form} to obtain \begin{equation*} \phi'' \space = \space \phi \cdot \left(2a \phi^2 + b\right) \end{equation*} and then differentiate $\phi^{[2n]}$ formula to obtain \begin{equation*} \phi^{[2n+1]} \space = \space \frac {d} {dz} \phi^{[2n]} \space = \space \phi' \cdot P_n(\phi^2) \space + \space 2 \phi^2 \phi' P_n'(\phi^2) \space = \space \phi' \cdot \left[ P_n(\phi^2) \space + \space 2 \phi^2 P_n'(\phi^2) \right] \space = \space \phi' \cdot Q_n(\phi^2) \end{equation*} and then differentiate the $\phi^{[2n+1]}$ formula to obtain \begin{equation*} \phi^{[2n+2]} \space = \space \frac {d} {dz} \phi^{[2n+1]} \space = \space \phi'' Q_n(\phi^2) \space + \space 2f \phi'^{2} Q_n'(\phi^2) \space = \space \phi \cdot \left[\left(2a \phi^2+b\right)Q_n(\phi^2) \space + \space 2 \left(a \phi^4 + b \phi^2 + c\right) Q_n'(\phi^2) \right] \space = \space \phi \cdot P_{n+1}(\phi^2) \end{equation*} Therefore the polynomials $P_n$ and $Q_n$ are given iteratively by \begin{equation*} P_0(x) = 1 \qquad\qquad Q_n(x) = P_n(x) \space + \space x P'_n(x) \qquad\qquad P_{n+1}(x) = (2ax+b)Q_n(x)\space + \space (ax^2+bx+c)Q'_n(x) \end{equation*}
The Weierstrass invariants for this quartic are \begin{equation} \label{eq:euler_invariants} g_2 \enspace = \enspace ac \space + \space \tfrac 1 {12} b^2 \qquad\qquad\qquad g_3 \enspace = \enspace \tfrac 1 6 abc \space - \space \tfrac 1 {216} b^3 \qquad\qquad\qquad \Delta \enspace = \enspace \tfrac 1 {16} ac\left(b^2 \space - \space 4ac\right)^2 \end{equation}
NOTES
Differential Equations For The Three Distinct Odd Order 2 Elliptic Functions
For the period lattice defined by invariants $g_2$ and $g_3$ with $g_2^3 - 27g_3^2 \ne 0$, the three distinct odd order 2 elliptic functions have differential equations of the form \eqref{eq:euler_form} where
This follows by solving the invariant equations \eqref{eq:euler_invariants} for $b$ and $ac$.
This cubic in $b$ always has three distinct roots because it's discriminant is a multiple of $g_2^3 - 27g_3^2$. It's three roots correspond to the three distinct odd functions. If given one solution $a,b,c$ the other two solutions $a',b',c'$ are given by
This follows by solving $\displaystyle \frac {(b'^3 - 9 g_2 b' + 54 g_3) \space - \space (b^3 - 9 g_2 b + 54 g_3)} {b' - b} \space = \space 0$ for $b'$ etc.
CROSS CHECK
Now every odd function with a zero at $z=0$ is just a constant multiple of the function $\phi(z,a,b)$ where $\phi'^2=a\phi^4+b\phi^2+a$ and $\phi(0)=0$. And the two other distinct odd functions on the same lattice are \begin{equation} \phi\left(z,\space \tfrac 1 2 a \space + \space \tfrac 1 4 b, \space 3a \space - \space \tfrac 1 2 b\right) \qquad \textsf{and} \qquad \phi\left(z,\space -\tfrac 1 2 a \space + \space \tfrac 1 4 b, \space -3a \space - \space \tfrac 1 2 b\right) \end{equation}
Symmetrical Roots Elliptic Curve
The Euler curve with the highest degree of root-symmetry is \begin{equation} \label{eq:curve_sym} y^2 \enspace = \enspace (x - \alpha)(x - \alpha^{-1})(x + \alpha)(x + \alpha^{-1}) \enspace = \enspace x^4 \space - \space (\alpha^2 + \alpha^{-2}) x^2 \space + \space 1 \end{equation} with invariants \begin{equation} g_2(\alpha) = \tfrac 1 {12}\left(\alpha^4\space + \space 14 + \space \alpha^{-4}\right) \qquad\qquad g_3(\alpha) = \tfrac 1 {216}\left(\alpha^2\space + \space \alpha^{-2}\right)\left(\alpha^4 \space - \space 34 + \alpha^{-4}\right) \qquad\qquad \Delta(\alpha) = \tfrac 1 {16} \left(\alpha^2 - \alpha^{-2}\right)^4 \end{equation} and cross-ratio \begin{equation} \lambda(\alpha) \space = \space \crossratio{\alpha,\alpha^{-1},-\alpha,-\alpha^{-1}} \space = \space - \tfrac 1 4 {\left({\alpha - \alpha^{-1}}\right)^{2}} \end{equation} There are 24 values of $\alpha$ for which \eqref{eq:curve_sym} has the same $j$-invariant. If $\zeta$ is a primitive fourth root of unity they are given by this 24th degree polynomial with the remarkably simple factorisation
\begin{equation} \label{eq:fac_sym} j(\beta) \space - \space j(\alpha) \enspace = \enspace \frac {\prod\limits_{i=0}^3 \left(\zeta^i \alpha - \beta \right) \cdot \prod\limits_{i=0}^3 \left(1 - \zeta^i \alpha\beta\right) \cdot \prod\limits_{i=0}^3 \prod\limits_{j=0}^3 \left(1 - \zeta^i\alpha - \zeta^j\beta - \zeta^{i+j} \alpha\beta\right)} {\vphantom{\prod\limits_{i=0}^0} 2^4 \thinspace 3^6 \thinspace \alpha^4\beta^4 \thinspace \left(1 - \alpha^4\right)^4\left(1 - \beta^4\right)^4} \enspace = \enspace 0 \end{equation}
This formula is the factorisation of \begin{equation*} j(\beta) \space - \space j(\alpha) \space = \space 27 \cdot \frac {g_2(\alpha)^3 g_3(\beta)^2 \space - \space g_2(\beta)^3 g_3(\alpha)^2} {\Delta(\alpha)\Delta{\beta}} \end{equation*} It's simplicity is explained by computing this equation using the cross-ratio invariant $\lambda$ instead of the $g_2,g_3$ invariants. This gives six degree 4 polynomials, arising from permuting the arguments of $\lambda$ \begin{equation*} \lambda(\beta) \space = \space \lambda(\alpha), \quad \frac 1 {\lambda(\alpha)}, \quad 1 - \lambda(\alpha), \quad \frac 1 {1 - \lambda(\alpha)}, \quad \frac {\lambda(\alpha)} {\lambda(\alpha) - 1} \quad \textsf{or} \quad \frac {\lambda(\alpha) - 1} {\lambda(\alpha)} \end{equation*} Each of these polynomials can be further factorised because of the four symmetries in $\lambda(\alpha)$ \begin{equation*} \lambda(\alpha) \space = \space \lambda(-\alpha) \space = \space \lambda(1 / \alpha) \space = \space \lambda(-1 / \alpha) \end{equation*} giving the factorisation \eqref{eq:fac_sym} into 24 degree 1 polynomials.
From this it follows that the 24 values are \begin{equation} \label{eq:beta_values} \beta \space = \space \zeta^i \alpha, \quad \frac 1 {\zeta^i \alpha}, \quad \zeta^{-j} \frac {1 - \zeta^i\alpha} {1 + \zeta^i\alpha} \qquad \textsf{where} \qquad i=0\ldots 3, \enspace j=0 \ldots 3 \end{equation} and the transformations which carry them onto one another are the Möbius transforms of the octahedral group.
Symmetrical Roots Elliptic Function
Let $\phi$ be the elliptic function with differential equation \begin{equation} \label{eq:euler_sym} \phi'^2 \enspace = \enspace \phi^4 \enspace - \enspace (\alpha^2 + \alpha^{-2}) \thinspace \phi^2 \enspace + \enspace 1 \end{equation} and boundary condition $\phi(0) = 0$, and for definiteness $\phi'(0) = 1$. We have the basic identities \begin{equation} \phi(z,\thinspace \alpha) \space = \space -\phi(-z, \thinspace \alpha) \space = \space \phi(z, \thinspace -\alpha) \space = \space \phi(z, \thinspace 1 /\alpha) \space = \space -\imath\phi(\imath z, \thinspace \imath \alpha) \end{equation} We also have the three distinct odd functions given by
We want to construct a function $\phi(\mu z, \beta)$ which has the same periods as $\phi(z, \alpha)$. Taking the value of $\beta$ from \eqref{eq:beta_values} with $i=j=0$ and equating the $g_2$ and $g_3$ invariants gives a formula for $\mu$ \begin{equation*} \mu \enspace = \enspace \sqrt[4]{\frac {g_2(\beta)} {g_2(\alpha)}} \enspace = \enspace \sqrt[6]{\frac {g_3(\beta)} {g_3(\alpha)}} \enspace = \enspace \pm \frac {2\imath\alpha} {1 - \alpha^2} \qquad \textsf{where} \qquad\beta \space = \space \frac {1-\alpha} {1 + \alpha} \end{equation*} Both the $g_2$ and $g_3$ formulae are required to determine which are the correct two roots.
Another Version Of $\sn$ Two Odd Companions
Using \eqref{eq:euler_sym} we can express $\phi$ in terms of $\sn$ as \begin{equation} \label{eq:sym_sn} \phi(z, \space \alpha) \space = \space {\alpha} \sn(\frac {z} {\alpha}, \space \alpha^2) \end{equation} From this we deduce these another set of Jacobian elliptic function formulae for the three distinct odd elliptic functions on the lattice $\left[4K,2\imath K'\right]$
This follows by converting equation \eqref{eq:sym_3} into a formula for $\sn$ using identity \eqref{eq:sym_sn}. \begin{equation*} \phi(\alpha z, \alpha) \space = \space \alpha \sn\left(z, \alpha^2\right) \qquad\qquad\textsf{and}\qquad\qquad \phi(\mu \alpha z, \beta) \space = \space \beta \sn\left(\frac {\mu \alpha z} {\beta}, \beta^2\right) \space = \space \beta \sn\left(\frac {2\imath\alpha^2 z} {1 - \alpha^2} \cdot \frac {1+\alpha} {1-\alpha}, \left(\frac {1-\alpha} {1+\alpha}\right)^2\right) \end{equation*} Because of the identity \begin{equation*} \sn(z, \space \frac 1 k) \space = \space k \sn(\frac z k, k) \end{equation*} using the opposite square root sign will still give the same function (up to a constant multiplier). \begin{equation*} \left(1 - \sqrt{k}\right)^2 \sn\left(\frac {2 \imath k} {\left(1 - \sqrt{k}\right)^2} \thinspace z, \space \left(\frac {1 - \sqrt{k}}{1 + \sqrt{k}}\right)^2 \right) \enspace = \enspace \left(1 + \sqrt{k}\right)^2 \sn\left(\frac {2 \imath k} {\left(1 + \sqrt{k}\right)^2} \thinspace z, \space \left(\frac {1 + \sqrt{k}}{1 - \sqrt{k}}\right)^2 \right) \end{equation*}
Formulae For The Three Odd Order 2 Elliptic Functions
There are three distinct odd order 2 elliptic functions with a zero at the origin. They can be expressed in terms of the Weierstrass $\sigma$ function as \begin{equation} \frac {\sigma(z) \thinspace \sigma(z - \omega_1)} {\sigma(z + \omega_2) \thinspace \sigma(z + \omega_3)}, \qquad \frac {\sigma(z) \thinspace \sigma(z - \omega_2)} {\sigma(z + \omega_1) \thinspace \sigma(z + \omega_3)}, \qquad \frac {\sigma(z) \thinspace \sigma(z - \omega_3)} {\sigma(z + \omega_1) \thinspace \sigma(z + \omega_2)} \end{equation} and in terms of the Weierstrass $\wp$ function as \begin{equation} \label{eq:p_odd} \frac {\wp(z) - e_1} {\wp'(z)}, \qquad \frac {\wp(z) - e_2} {\wp'(z)}, \qquad \frac {\wp(z) - e_3} {\wp'(z)} \end{equation} and in terms of the Weierstrass $h$ functions as \begin{equation} \frac {h_1(z)} {h_2(z)h_3(z)}, \qquad \frac {h_2(z)} {h_1(z)h_3(z)}, \qquad \frac {h_3(z)} {h_1(z)h_2(z)} \end{equation} and in terms of the Weierstrass $\zeta$ function as \begin{equation} \eta_1 \space + \space \zeta(z + \omega_2) \space - \space \zeta(z - \omega_3), \qquad \eta_2 \space + \space \zeta(z + \omega_3) \space - \space \zeta(z - \omega_1), \qquad \eta_3 \space + \space \zeta(z + \omega_1) \space - \space \zeta(z - \omega_2) \end{equation} and in terms of the Jacobian elliptic functions on the lattice $\left[4K,2iK'\right]$ as \begin{equation} \sn(z), \qquad \sn(z) \space \pm \space \frac {\cn(z)\dn(z) - 1} {k\sn(z)} \end{equation} and in terms of the Jacobian elliptic functions on the lattice $\left[2K,2iK'\right]$ as \begin{equation} \frac {\sn(z)} {\cn(z)\dn(z)}, \qquad \frac {\sn(z)\cn(z)} {\dn(z)}, \qquad \frac {\sn(z)\dn(z)} {\cn(z)} \end{equation} and in terms of any even order 2 elliptic function $f$ with roots $e_1,e_2,e_3,e_4$ and $f(0) = e_4$ as \begin{equation} \frac {\left(f(z) - e_1\right) \left(f(z) - e_4\right)} {f'(z)}, \qquad \frac {\left(f(z) - e_2\right) \left(f(z) - e_4\right)} {f'(z)}, \qquad \frac {\left(f(z) - e_3\right) \left(f(z) - e_4\right)} {f'(z)} \end{equation}
Vector Space Spanned By Odd Order 2 Elliptic Functions
The three odd functions with a zero at the origin are linearly dependent. Two of them, along with the unit function form a basis for the 3-dimensional vector space all elliptic functions with at most simple poles at $\omega_1,\omega_2,\omega_3$. This is confirmed by the identity \begin{equation} \begin{vmatrix} 1 & \large\frac {\wp(z_1) \space - \space e_1} {\wp'(z_1)} & \large\frac {\wp(z_1) \space - \space e_2} {\wp'(z_1)} \\ 1 & \large\frac {\wp(z_2) \space - \space e_1} {\wp'(z_2)} & \large\frac {\wp(z_2) \space - \space e_2} {\wp'(z_2)} \\ 1 & \large\frac {\wp(z_3) \space - \space e_1} {\wp'(z_3)} & \large\frac {\wp(z_3) \space - \space e_2} {\wp'(z_3)} \\ \end{vmatrix} \enspace = \enspace \frac {(e_2 - e_1)} {\wp'(z_1)\wp'(z_2)\wp'(z_3)} \cdot \begin{vmatrix} 1 & \wp(z_1) & \wp'(z_1) \\ 1 & \wp(z_2) & \wp'(z_2) \\ 1 & \wp(z_3) & \wp'(z_3) \\ \end{vmatrix} \end{equation}
The three odd functions with a pole at the origin are linearly independent. The three of them, along with the unit function form a basis for the 4-dimensional vector space all elliptic functions with at most simple poles at $0, \omega_1,\omega_2,\omega_3$. This is confirmed by the identity \begin{equation} \begin{vmatrix} 1 & \large\frac {\wp'(z_1)} {\wp(z_1) \space - \space e_1} & \large\frac {\wp'(z_1)} {\wp(z_1) \space - \space e_2} & \large\frac {\wp'(z_1)} {\wp(z_1) \space - \space e_3} \\ 1 & \large\frac {\wp'(z_2)} {\wp(z_2) \space - \space e_1} & \large\frac {\wp'(z_2)} {\wp(z_2) \space - \space e_2} & \large\frac {\wp'(z_2)} {\wp(z_2) \space - \space e_3} \\ 1 & \large\frac {\wp'(z_3)} {\wp(z_3) \space - \space e_1} & \large\frac {\wp'(z_3)} {\wp(z_3) \space - \space e_2} & \large\frac {\wp'(z_3)} {\wp(z_3) \space - \space e_3} \\ 1 & \large\frac {\wp'(z_4)} {\wp(z_4) \space - \space e_1} & \large\frac {\wp'(z_4)} {\wp(z_4) \space - \space e_2} & \large\frac {\wp'(z_4)} {\wp(z_4) \space - \space e_3} \\ \end{vmatrix} \enspace = \enspace 64 \cdot \frac {(e_1 - e_2)(e_2 - e_3)(e_3 - e_1)} {\wp'(z_1)\wp'(z_2)\wp'(z_3)\wp'(z_4)} \cdot \begin{vmatrix} 1 & \wp(z_1) & \wp(z_1)^2 & \wp'(z_1) \\ 1 & \wp(z_2) & \wp(z_2)^2 & \wp'(z_2) \\ 1 & \wp(z_3) & \wp(z_3)^2 & \wp'(z_3) \\ 1 & \wp(z_4) & \wp(z_4)^2 & \wp'(z_4) \\ \end{vmatrix} \end{equation}
Algebraic Relation Between Pair Of Odd Order 2 Elliptic Functions
Any pair of distinct odd order 2 elliptic functions satisfy an algebraic relation of the form
This curve is a special case of both the biquadratic curve and the cubic curve.
Definition Of Normalised Odd Function
An odd order 2 elliptic function $\phi$ is normalised if translating it's argument by a half-period negates and/or inverts it ie. \begin{equation} \phi(z+\omega_i) \space = \space -\phi(z), \qquad \phi(z+\omega_j) \space = \space \frac 1 {\phi(z)}, \qquad \phi(z + \omega_k) \space = \space -\frac 1 {\phi(z)} \end{equation} The normalisation factor is only determined up to an arbitrary fourth root of unity. Therefore the general formula for a normalised odd function $\phi$ is
where $j,k$ are distinct and $n=0,1,2,3$. Since $\eta_j\omega_k - \eta_k\omega_j = \pm \sfrac 1 2 \pi \imath$ this formula is symmetric in $j,k$.
Differential Equation For Normalised Odd Order 2 Elliptic Functions
A normalised odd order 2 elliptic function $\phi$ has a differential equation of the form
An odd order 2 elliptic function $\phi(z)$ is normalised if $\phi(z + \omega_i) = 1 / \phi(z)$ for some $i \in \{1,2,3\}$. Substituting this into \eqref{eq:euler_form} and clearing denominators gives \begin{equation*} \phi'(z)^2 \enspace = \enspace a \enspace + \enspace b \phi(z)^2 \enspace + \enspace c \phi(z)^4 \end{equation*} and the only way this can happen is if $a = c$.
Equation \eqref{eq:normalised_euler_form} is equivalent to the differential equation having four roots of the form $\alpha, -\alpha, 1 / \alpha, -1 / \alpha$.
Transforming General Order 2 Elliptic To Normalised Euler Form With A Möbius Transform
An arbitrary even order 2 elliptic function $f$ with roots $e_1,e_2,e_3,e_4$ can be put into normalised Euler form by a Möbius transformation which maps them to four roots in the form $\alpha,-\alpha,1/\alpha,-1/\alpha$. Such a transformation is given implicitly by the cross-ratio formula \begin{equation} \crossratio{\alpha,-\alpha,1/\alpha,\phi(z)} \enspace = \enspace \crossratio{e_1,e_2,e_3,f(z)} \end{equation} where $\alpha$ is found by solving the quadratic equation obtained by equating the cross-ratio's of the roots \begin{equation} \crossratio{\alpha,-\alpha,1/\alpha,-1/\alpha} \enspace = \enspace - \left[ \frac {2\alpha} {1 - \alpha^2} \right]^2 \enspace = \enspace \crossratio{e_1,e_2,e_3,e_4} \end{equation}
Formulae For Normalised Odd Order 2 Elliptic Functions
There are three distinct normalised odd order 2 elliptic functions with a zero at the origin. They can be expressed in terms of the Weierstrass $\sigma$ function as \begin{equation} e^{-\eta_2\omega_3} \cdot \frac {\sigma(z) \thinspace \sigma(z - \omega_1)} {\sigma(z + \omega_2) \thinspace \sigma(z + \omega_3)}, \qquad\qquad e^{-\eta_3\omega_1} \cdot \frac {\sigma(z) \thinspace \sigma(z - \omega_2)} {\sigma(z + \omega_1) \thinspace \sigma(z + \omega_3)}, \qquad\qquad e^{-\eta_1\omega_2} \cdot \frac {\sigma(z) \thinspace \sigma(z - \omega_3)} {\sigma(z + \omega_1) \thinspace \sigma(z + \omega_2)} \end{equation} and in terms of the Weierstrass $\wp$ function as \begin{equation} \sqrt{ \frac{(\wp(z) - e_1)(e_2 - e_3)} {(\wp(z) - e_2)(\wp(z) - e_3)} }, \qquad\qquad \sqrt{ \frac{(\wp(z) - e_2)(e_3 - e_1)} {(\wp(z) - e_3)(\wp(z) - e_1)} }, \qquad\qquad \sqrt{ \frac{(\wp(z) - e_3)(e_1 - e_2)} {(\wp(z) - e_1)(\wp(z) - e_2)} } \end{equation} and in terms of the Weierstrass $h$ functions as \begin{equation} h_3(\omega_2) \cdot \frac {h_1(z)} {h_2(z)h_3(z)}, \qquad\qquad h_1(\omega_3) \cdot \frac {h_2(z)} {h_1(z)h_3(z)}, \qquad\qquad h_2(\omega_1) \cdot \frac {h_3(z)} {h_1(z)h_2(z)} \end{equation} and in terms of any even order 2 elliptic function $f$ with roots $e_1,e_2,e_3,e_4$ and $f(0) = e_4$ as \begin{equation} \label{eq:norm_f} \sqrt{\frac{(f(z) - e_1)(f(z) - e_4)(e_2 - e_3)} {(f(z) - e_2)(f(z) - e_3)(e_1 - e_4)} }, \qquad\qquad \sqrt{\frac{(f(z) - e_2)(f(z) - e_4)(e_3 - e_1)} {(f(z) - e_3)(f(z) - e_1)(e_2 - e_4)} }, \qquad\qquad \sqrt{\frac{(f(z) - e_3)(f(z) - e_4)(e_1 - e_2)} {(f(z) - e_1)(f(z) - e_2)(e_3 - e_4)} } \end{equation} The expressions under the square root signs in \eqref{eq:norm_f} are weight zero symmetric root differences. Such expression are invariant under Möbius transforms and therefore give the same value for every possible $f$ (with the same periods).
Algebraic Relation Between Pair Of Normalised Odd Order 2 Elliptic Functions
Any pair of distinct odd order 2 elliptic functions, after scaling by suitable normalisation factors, satisfy an algebraic relation of the form
\begin{equation} \label{eq:reduced_hors} \left(y \space + \space \frac 1 y\right) \enspace = \enspace \sqrt{\lambda} \left(x \space + \space \frac 1 x\right) \qquad \textsf{where} \qquad \lambda \space = \space \crossratio{e_1,e_2,e_3,e_4} \space = \space \frac {(e_1 - e_2)(e_3 - e_4)} {(e_1 - e_3)(e_2 - e_4)} \end{equation}
This is the only cubic curve invariant under inversions in both $x$ and $y$ and double negations $(x,y) \rightarrow (-x,-y)$.