In this section we derive an addition formula for the Weiersrass $\sigma$ function. We also derive several different variants for other sigma products and theta functions.
Sigma Addition Formula
The identity \begin{equation} \label{eq:triple} (e_1-e_2)(e_3-e_4) + (e_1-e_3)(e_4-e_2) + (e_1-e_4)(e_2-e_3) = 0 \end{equation} has already appeared in these notes. It implies \begin{equation} \label{eq:triplep} [\wp(u)-\wp(v)]\thinspace[\wp(x)-\wp(y)]\space+\space[\wp(u)-\wp(x)]\thinspace[\wp(y)-\wp(v)]\space+\space[\wp(u)-\wp(y)]\thinspace[\wp(v)-\wp(x)] = 0 \end{equation} holds for all $u,v,x,y$. Substituting the formula \begin{equation} \label{eq:wpsigma} \wp(u) - \wp(v) = -\frac {\sigma(u-v)\sigma(u+v)} {\sigma^2(u)\sigma^2(v)} \end{equation} into \eqref{eq:triplep} gives the addition formula for the Weierstrass $\sigma$ function \begin{equation} \label{eq:triples} \sigma(u - v)\sigma(u + v)\sigma(x - y)\sigma(x + y)\space+\space \sigma(u - x)\sigma(u + x)\sigma(y - v)\sigma(y + v)\space+\space \sigma(u - y)\sigma(u + y)\sigma(v - x)\sigma(v + x)\space=\space 0 \end{equation} Putting \begin{equation} \label{eq:triple2} \sigma(x,y)=\sigma(x-y)\sigma(x+y) \end{equation} allows \eqref{eq:triples} to be written as
\begin{equation} \label{eq:tripleg} \sigma(u,v)\sigma(x,y) \space + \space \sigma(u,x)\sigma(y,v) \space + \space \sigma(u,y)\sigma(v,x) \space = \space 0 \end{equation}
Period Lattices with 4 and 6-fold Rotational Symmetry
For the Weierstrass elliptic function with 3-fold symmetry on a period lattice with 6-fold symmetry we have \begin{equation} \label{eq:wpsigma3} \wp'(u) - \wp'(v) = 2\frac {\sigma(u-v)\sigma(u-\zeta^2 v)\sigma(u-\zeta^4 v)} {\sigma^3(u)\sigma^3(v)} \end{equation} where $\zeta = e^{\pi i/3}$ is the sixth root of unity. When we put \begin{equation} \label{eq:triple3} \sigma(x,y) = \sigma(x - y)\sigma(x - \zeta^2 y)\sigma(x + \zeta^2 y) \end{equation} this also satisfies addition formula \eqref{eq:tripleg}.
Similarly the elliptic function with 4-fold symmetry \begin{equation} \label{eq:wpsigma4} \wp''(u) - \wp''(v) = -6 \frac {\sigma(u-v)\sigma(u-iv)\sigma(u-i^2v)\sigma(u-i^3v)} {\sigma^4(u)\sigma^4(v)} \end{equation} when \begin{equation} \label{eq:triple4} \sigma(x,y) = \sigma(x - y)\sigma(x - iy)\sigma(x + y)\sigma(x + iy) \end{equation} also satisfies addition formula \eqref{eq:tripleg}.
And the elliptic function with 6-fold symmetry \begin{equation} \label{eq:wpsigma6} \wp''''(u) - \wp''''(v) = -120 \frac {\sigma(u-v)\sigma(u-\zeta v)\sigma(u-\zeta^2 v)\sigma(u-\zeta^3 v)\sigma(u-\zeta^4 v)\sigma(u-\zeta^5 v)} {\sigma^6(u)\sigma^6(v)} \end{equation} with \begin{equation} \label{eq:triple6} \sigma(x,y) = \sigma(x - y)\sigma(x - \zeta y)\sigma(x - \zeta^2 y)\sigma(x + y)\sigma(x + \zeta y)\sigma(x + \zeta^2 y) \end{equation} also satisfies addition formula \eqref{eq:tripleg}.
Theta Function Equivalent
Formula \eqref{eq:tripleg} also holds for theta functions. Define the theta function \begin{equation} \label{eq:theta} \theta(z) = \sum_{n=-\infty}^{\infty}(-1)^n z^n q^{\tfrac 1 2 n(n-1)} \end{equation} where $|q| \lt 1$. Define \begin{equation} \label{eq:theta2} \theta(x,y) = \frac 1 x \thinspace \theta(xy) \thinspace \theta(x/y) \end{equation} then we have the following identity, which can also be proven using \eqref{eq:triple}
\begin{equation} \label{eq:tripletheta} \theta(u,v)\theta(x,y) \space + \space \theta(u,x)\theta(y,v) \space + \space \theta(u,y)\theta(v,x) \space = \space 0 \end{equation}
This simple algebraic proof of \eqref{eq:tripletheta} makes use of identity \eqref{eq:triple}. Substituting \eqref{eq:theta} into \eqref{eq:theta2} gives \begin{equation*} \theta(x,y) = \sum_{n_1,n_2 \in \Z} (-1)^{n_1+n_2} \space x^{n_1+n_2-1} \space y^{n_1-n_2} \space q^{\tfrac 1 2 n_1(n_1-1) + \tfrac 1 2 n_2(n_2-1)} \end{equation*} Making the change of variables $m_1=n_1+n_2-1,\space m_2=n_1-n_2$ gives \begin{equation*} \theta(x,y) = \sum_{\substack{m_1\not\equiv m_2 \mod 2 \\ m_1,m_2 \in \Z}} (-1)^{m_1+1} \space x^{m_1} \space y^{m_2} \space q^{\tfrac 1 4 (m_1^2 + m_2^2 - 1)} = \sum_{m_1,m_2 \in \Z} -\tfrac 1 2\left[(-1)^{m_1} - (-1)^{m_2}\right] \space x^{m_1} \space y^{m_2} \space q^{\tfrac 1 4 (m_1^2 + m_2^2 - 1)} \end{equation*} and so \begin{equation*} \theta(u,v)\theta(x,y) = \sum_{m_1,m_2,m_3,m_4 \in \Z} \tfrac 1 4\left[(-1)^{m_1} - (-1)^{m_2}\right]\left[(-1)^{m_3} - (-1)^{m_4}\right] \space u^{m_1} \space v^{m_2} \space x^{m_3} \space y^{m_4} \space q^{\tfrac 1 4 (m_1^2 + m_2^2 + m_3^2 + m_4^2 - 2)} \end{equation*} When this formula is substituted into \eqref{eq:tripletheta} the terms in square brackets annihilate because of \eqref{eq:triple} yielding the desired identity.
Theta Product Equivalent
Define the theta product
\begin{equation} \label{eq:triplephi} \phi(u,v)\phi(x,y) \space + \space \phi(u,x)\phi(y,v) \space + \space \phi(u,y)\phi(v,x) \space = \space 0 \end{equation}
Substituting Jacobi's triple product identity \begin{equation*} \label{eq:j3p} \theta(z) = \sum_{n=-\infty}^{\infty}(-1)^n z^n q^{\tfrac 1 2 n(n-1)} = (1-z)\prod_{n=1}^{\infty}(1- z q^n)(1-\frac 1 z q^n)(1-q^n) \end{equation*} into \eqref{eq:theta2} we have \begin{equation*} \theta(x,y) = \phi(x,y) \prod_{n=1}^{\infty}(1 - q^n)^2 \end{equation*} and the result then follows using \eqref{eq:tripletheta}
Putting $x,y,u,v$ equal to various powers of $q$ in \eqref{eq:triplephi} gives several well known theta product formulae as special cases.
EXAMPLE 1
EXAMPLE 2
Connection to Pfaffians
There is a natural way to extend \eqref{eq:triple} to $n$ variables although it doesn't really give any further identities. Define the $n\times n$ skew-symmetric matrix $E$ by \begin{equation} \label{eq:E} E_{ij} = e_i - e_j \end{equation} then $E$ has rank 2 (because it is the difference of two rank 1 matrices) and therefore $\det(E)=0$ for $n > 2$, and by Cayley's theorem on Pfaffians $\pfaffian(E)=0$. For $n=4$ this is equation \eqref{eq:triple}.
If we put $e_i=\wp(x_i)$ then apply \eqref{eq:wpsigma} and multiply out the denominator we get \begin{equation} \label{eq:pfaffian} \pfaffian\left(\sigma(x_i,x_j)\right) = 0 \end{equation} which is an addition formula in $n$ variables. For $n = 4$ this is equation \eqref{eq:tripleg}.
Frobenius-Stickelberger Addition Formula
In their 1877 paper [1], Frobenius and Stickelberger start with the ingenious zeta-sigma determinant formula:
\begin{equation} \label{eq:fsz} \begin{vmatrix} 0 & 1 & 1 & \ldots & 1 \\ 1 & \zeta(u_1+v_1) & \zeta(u_1+v_2) & \ldots & \zeta(u_1+v_n) \\ 1 & \zeta(u_2+v_1) & \zeta(u_2+v_2) & \ldots & \zeta(u_2+v_n) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \zeta(u_n+v_1) & \zeta(u_n+v_2) & \ldots & \zeta(u_n+v_n) \\ \end{vmatrix} \space = \space - \frac {\sigma\left(\sum\limits_{i=1}^n (u_i + v_i)\right) \space \prod\limits_{1 \le i \lt j \le n} \space \sigma(u_i - u_j) \sigma(v_i - v_j)} {\prod\limits_{i=1}^n \prod\limits_{j=1}^n \sigma(u_i + v_j)} \end{equation}
The derivation of this formula goes something like this. The LHS is an elliptic function in the $u_i$ because $\zeta(u_i + v_j + 2\omega_k) = \zeta(u_i + v_j) + 2\eta_k$ and the $2\eta_k$'s can be removed by an elementary row operation. It is also an elliptic function in the $v_i$ for a similar reason. It has $n-1$ obvious zeroes at $u_1 = u_2, \ldots u_n$ and $n$ obvious poles at $u_1 = -v_1, \ldots -v_n$ and hence a non-obvious zero at $u_1 = -(u_2 + \ldots u_n + v_1 + \ldots v_n)$ because for any elliptic function the sum of zeroes is congruent to the sum of poles modulo the period lattice. The constant multiplier on the RHS needs to be determined. For $n=1$ it is easily seen to be $-1$. The following iterative process shows it is the same for every $n$ by reducing the formula to the $n-1$ case. Put $v_n=0$ then multiply the last column on the LHS by $u_n$ and let $u_n \rightarrow 0$ so that all elements in the last column become 0 except the last which will be 1. Then expanding the determinant by the last column reduces it to the $n - 1$ version. On the RHS the $u_n + v_n$ term will disappear from the first $\sigma$ term in the numerator. In the product, terms containing $u_n$ or $v_n$ reduce to $\prod_{i=1}^{n-1} \sigma(u_i)\sigma(v_i)$. In the denominator there will be a similar set of terms which will cancel them out. Also there will be one additional term in the denominator $\sigma(u_n)/u_n$ which will go to 1. Then the whole formula has been reduced to the $n - 1$ version.
From this they obtain their classic addition formula \begin{equation} \label{eq:fsn} \begin{vmatrix} 1 & \wp(u_1) & \wp'(u_1) & \ldots & \wp^{(n-2)}(u_1) \\ 1 & \wp(u_2) & \wp'(u_2) & \ldots & \wp^{(n-2)}(u_2) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \wp(u_n) & \wp'(u_n) & \ldots & \wp^{(n-2)}(u_n) \\ \end{vmatrix} \space = \space (-1)^{n-1} \space \prod\limits_{i=1}^{n-1} i! \space \frac {\sigma\left(\sum\limits_{i=1}^n u_i\right) \space \prod\limits_{1 \le i \lt j \le n} \sigma(u_j-u_i)} {\prod\limits_{i=1}^n \sigma(u_i)^n} \end{equation} essentially by taking the limit of \eqref{eq:fsz} as $v_i \rightarrow 0$. They also obtain the Kiepert formula \begin{equation} \label{eq:fslimit} \begin{vmatrix} \wp'(u) & \wp''(u) & \ldots & \wp^{(n-1)}(u) \\ \wp''(u) & \wp'''(u) & \ldots & \wp^{(n)}(u) \\ \vdots & \vdots & \ddots & \vdots \\ \wp^{(n-1)}(u) & \wp^{(n)}(u) & \ldots & \wp^{(2n-3)}(u) \\ \end{vmatrix} \space = \space (-1)^{n-1} \space \left(\prod\limits_{i=1}^{n-1} i!\right)^2 \space \frac {\sigma(n u)} {\sigma(u)^{n^2}} \end{equation} by taking the limit of \eqref{eq:fsn} as $u_i \rightarrow u$.
COROLLARY
Using the $\zeta$ addition formula we can also write \eqref{eq:fsz} in terms of $\wp$ as follows \begin{equation} \label{eq:fszp} (\tfrac 1 2)^{n-1} \begin{vmatrix} 0 & 1 & 1 & \ldots & 1 \\ 1 & \frac {\wp'(u_1) - \wp'(v_1)} {\wp(u_1) - \wp(v_1)} & \frac {\wp'(u_1) - \wp'(v_2)} {\wp(u_1) - \wp(v_2)} & \ldots & \frac {\wp'(u_1) - \wp'(v_n)} {\wp(u_1) - \wp(v_n)} \\ 1 & \frac {\wp'(u_2) - \wp'(v_1)} {\wp(u_2) - \wp(v_1)} & \frac {\wp'(u_2) - \wp'(v_2)} {\wp(u_2) - \wp(v_2)} & \ldots & \frac {\wp'(u_2) - \wp'(v_n)} {\wp(u_2) - \wp(v_n)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \frac {\wp'(u_n) - \wp'(v_1)} {\wp(u_n) - \wp(v_1)} & \frac {\wp'(u_n) - \wp'(v_2)} {\wp(u_n) - \wp(v_2)} & \ldots & \frac {\wp'(u_n) - \wp'(v_n)} {\wp(u_n) - \wp(v_n)} \\ \end{vmatrix} \space = \space - \frac {\sigma\left(\sum\limits_{i=1}^n (u_i + v_i)\right) \space \prod\limits_{1 \le i \lt j \le n} \space \sigma(u_i - u_j) \sigma(v_i - v_j)} {\prod\limits_{i=1}^n \prod\limits_{j=1}^n \sigma(u_i + v_j)} \end{equation}Extended Frobenius-Stickelberger Formula
The classic Frobenius-Stickelberger formula \eqref{eq:fsn} can be extended to general elliptic functions. The set of elliptic functions with poles of order at most $n_j \gt 0$ at $a_j$ for $j=1\dots k$ form a vector space of dimension $n = \sum n_j$. If $f_1 \dots f_n$ is a basis for that vector space then
\begin{equation} \label{eq:fsx} \begin{vmatrix} f_1(u_1) & f_2(u_1) & \ldots & f_n(u_1) \\ f_1(u_2) & f_2(u_2) & \ldots & f_n(u_2) \\ \vdots & \vdots & \ddots & \vdots \\ f_1(u_n) & f_2(u_n) & \ldots & f_n(u_n) \\ \end{vmatrix} \space = \space K \space \frac {\sigma\left(\sum\limits_{i=1}^n u_i - \sum\limits_{j=1}^k n_j a_j\right) \space \prod\limits_{1 \le i \lt j \le n} \sigma(u_j - u_i)} {\prod\limits_{i=1}^n \prod\limits_{j=1}^k \sigma(u_i - a_j)^{n_j}} \end{equation}
This formula follows from the fact that the LHS of \eqref{eq:fsx} is an order $n$ elliptic function of $u_1$ with $n-1$ obvious zeroes at $u_1 = u_2, \ldots, u_n$ and obvious poles at $u_1 = a_j$ of order $n_j$ (for almost all values of $u_i$), and a non-obvious zero at $u_1 = (n_1 a_1 + \dots + n_k a_k)-(u_2 + \ldots + u_n)$. This last zero follows from the fact that for any elliptic function the sum of zeroes equals the sum of poles (modulo the period lattice).
where $K$ is a constant independent of the $u_i$. An explicit formula for $K$ can be obtained as follows. Let $R$ be the matrix of the coefficients of the negative powers in the Laurent expansions of $f_i$ at $a_j$. Each column of $R$ corresponds to one of the $f_i$. Each row of $R$ corresponds to the coefficients of $(z-a_j)^l$ in the Laurent expansions of $f_i(z)$ at one particular point $a_j$ and for one particular $l \lt 0$. The order of the rows is taken as, first the coefficients of $(z-a_1)^{-n_1} \ldots (z-a_1)^{-1}$ at $a_1$, then of $(z-a_2)^{-n_2} \ldots (z-a_2)^{-1}$ at $a_2$ etc. Under this ordering we have
\begin{equation} \label{eq:fsxK} K \space = \space \begin{vmatrix} R_{11} & R_{12} & \ldots & R_{1n} \\ R_{21} & R_{22} & \ldots & R_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ R_{n-1,1} & R_{n-1,2} & \ldots & R_{n-1,n} \\ f_1(u) & f_2(u) & \ldots & f_n(u) \\ \end{vmatrix} \quad \prod\limits_{1 \le i \lt j \le k} \sigma(a_i - a_j)^{n_i n_j} \end{equation}
Let $D$ be the determinant on the LHS of \eqref{eq:fsx}. The following process can be used to convert $D$ to $R$ one row at a time:
As a further check we see that if we if we make a linear change of basis in \eqref{eq:fsx} both sides of the equation will be multiplied by the same determinant.
Note $\rank(R) = n - 1$ because the sum of the $k$ rows corresponding to the residues of $f_i$ is a row of zeroes. Due to this the last row of residues of $f_i$ at $a_k$, in the formula for $K$, ends up being replaced by the basis functions evaluated at a completely arbitrary point $u$. This may seem surprising but all it is really saying is that a certain linear combination of the basis functions $f_i(u)$ is constant. We may take $u$ to be one of the poles $a_j$ in which case the last row will consist of the coefficients of the $(z-a_j)^0$ terms in the Laurent expansion of $f_i$ at $a_j$.
I have called \eqref{eq:fsx} the Extended Frobenius-Stickelberger formula because I need a name for it and don't want to confuse it with the original Frobenius-Stickelberger formula \eqref{eq:fsn}. It is more or less equivalent to formula \eqref{eq:fsz} and is a generalisation of formula \eqref{eq:fsn}. Note there are already Generalised Frobenius-Stickelberger formulae in the literature but these refer to the generalisation of \eqref{eq:fsn} to hyperelliptic $\sigma$ functions. For example see [2]. Formula \eqref{eq:fsx} is also closely related to the Vandermonde determinant formula.
COROLLARY
EXAMPLE
Extended Kiepert Formula
Letting $u_i \rightarrow u$ in \eqref{eq:fsx} yields an extension of the Kiepert formula:
\begin{equation} \label{eq:fsxlimit} \begin{vmatrix} f_1(u) & f_2(u) & \ldots & f_n(u) \\ f_1'(u) & f_2'(u) & \ldots & f_n'(u) \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(n-1)}(u) & f_2^{(n-1)}(u) & \ldots & f_n^{(n-1)}(u) \\ \end{vmatrix} \space = \space K \space \prod\limits_{i=1}^{n-1} {i!} \space \frac {\sigma\left(n u - \sum\limits_{j=1}^k n_j a_j\right)} {\left(\prod\limits_{j=1}^k \sigma(u - a_j)^{n_j}\right)^n} \end{equation}
In more detail in formula \eqref{eq:fsx}
where $K$ is the constant given in \eqref{eq:fsxK}.
References
[1] Zur Theorie der elliptischen Functionen J. reine angew. Math 83 (1877), 175–179
[2] Determinant Expressions For Hyperelliptic Functions Proceedings of the Edinburgh Mathematical Society, Volume 48, Issue 3, October 2005, pp. 705 - 742