Home Powered by MathJax

Addition Formula For Sigma And Theta Functions

by

Gregg Kelly

In this section we derive an addition formula for the Weiersrass $\sigma$ function. We also derive several different variants for other sigma products and theta functions.

Sigma Addition Formula

The identity \begin{equation} \label{eq:triple} (e_1-e_2)(e_3-e_4) + (e_1-e_3)(e_4-e_2) + (e_1-e_4)(e_2-e_3) = 0 \end{equation} has already appeared in these notes. It implies \begin{equation} \label{eq:triplep} [\wp(u)-\wp(v)]\thinspace[\wp(x)-\wp(y)]\space+\space[\wp(u)-\wp(x)]\thinspace[\wp(y)-\wp(v)]\space+\space[\wp(u)-\wp(y)]\thinspace[\wp(v)-\wp(x)] = 0 \end{equation} holds for all $u,v,x,y$. Substituting the formula \begin{equation} \label{eq:wpsigma} \wp(u) - \wp(v) = -\frac {\sigma(u-v)\sigma(u+v)} {\sigma^2(u)\sigma^2(v)} \end{equation} into \eqref{eq:triplep} gives the addition formula for the Weierstrass $\sigma$ function \begin{equation} \label{eq:triples} \sigma(u - v)\sigma(u + v)\sigma(x - y)\sigma(x + y)\space+\space \sigma(u - x)\sigma(u + x)\sigma(y - v)\sigma(y + v)\space+\space \sigma(u - y)\sigma(u + y)\sigma(v - x)\sigma(v + x)\space=\space 0 \end{equation} Putting \begin{equation} \label{eq:triple2} \sigma(x,y)=\sigma(x-y)\sigma(x+y) \end{equation} allows \eqref{eq:triples} to be written as

\begin{equation} \label{eq:tripleg} \sigma(u,v)\sigma(x,y) \space + \space \sigma(u,x)\sigma(y,v) \space + \space \sigma(u,y)\sigma(v,x) \space = \space 0 \end{equation}

In this form the identity holds in many other variations.

Period Lattices with 4 and 6-fold Rotational Symmetry

For the Weierstrass elliptic function with 3-fold symmetry on a period lattice with 6-fold symmetry we have \begin{equation} \label{eq:wpsigma3} \wp'(u) - \wp'(v) = 2\frac {\sigma(u-v)\sigma(u-\zeta^2 v)\sigma(u-\zeta^4 v)} {\sigma^3(u)\sigma^3(v)} \end{equation} where $\zeta = e^{\pi i/3}$ is the sixth root of unity. When we put \begin{equation} \label{eq:triple3} \sigma(x,y) = \sigma(x - y)\sigma(x - \zeta^2 y)\sigma(x + \zeta^2 y) \end{equation} this also satisfies addition formula \eqref{eq:tripleg}.

Similarly the elliptic function with 4-fold symmetry \begin{equation} \label{eq:wpsigma4} \wp''(u) - \wp''(v) = -6 \frac {\sigma(u-v)\sigma(u-iv)\sigma(u-i^2v)\sigma(u-i^3v)} {\sigma^4(u)\sigma^4(v)} \end{equation} when \begin{equation} \label{eq:triple4} \sigma(x,y) = \sigma(x - y)\sigma(x - iy)\sigma(x + y)\sigma(x + iy) \end{equation} also satisfies addition formula \eqref{eq:tripleg}.

And the elliptic function with 6-fold symmetry \begin{equation} \label{eq:wpsigma6} \wp''''(u) - \wp''''(v) = -120 \frac {\sigma(u-v)\sigma(u-\zeta v)\sigma(u-\zeta^2 v)\sigma(u-\zeta^3 v)\sigma(u-\zeta^4 v)\sigma(u-\zeta^5 v)} {\sigma^6(u)\sigma^6(v)} \end{equation} with \begin{equation} \label{eq:triple6} \sigma(x,y) = \sigma(x - y)\sigma(x - \zeta y)\sigma(x - \zeta^2 y)\sigma(x + y)\sigma(x + \zeta y)\sigma(x + \zeta^2 y) \end{equation} also satisfies addition formula \eqref{eq:tripleg}.

Theta Function Equivalent

Formula \eqref{eq:tripleg} also holds for theta functions. Define the theta function \begin{equation} \label{eq:theta} \theta(z) = \sum_{n=-\infty}^{\infty}(-1)^n z^n q^{\tfrac 1 2 n(n-1)} \end{equation} where $|q| \lt 1$. Define \begin{equation} \label{eq:theta2} \theta(x,y) = \frac 1 x \thinspace \theta(xy) \thinspace \theta(x/y) \end{equation} then we have the following identity, which can also be proven using \eqref{eq:triple}

\begin{equation} \label{eq:tripletheta} \theta(u,v)\theta(x,y) \space + \space \theta(u,x)\theta(y,v) \space + \space \theta(u,y)\theta(v,x) \space = \space 0 \end{equation}

Theta Product Equivalent

Define the theta product

\begin{equation} \label{eq:thetaprod} \phi(x,y) = (1-xy)(\frac 1 x - \frac 1 y)\prod_{n=1}^{\infty}(1 - xy q^n)(1 - \frac 1 {xy} q^n)(1 - \frac x y q^n)(1 - \frac y x q^n) \end{equation}

then

\begin{equation} \label{eq:triplephi} \phi(u,v)\phi(x,y) \space + \space \phi(u,x)\phi(y,v) \space + \space \phi(u,y)\phi(v,x) \space = \space 0 \end{equation}

Putting $x,y,u,v$ equal to various powers of $q$ in \eqref{eq:triplephi} gives several well known theta product formulae as special cases.

EXAMPLE 1

EXAMPLE 2

Connection to Pfaffians

There is a natural way to extend \eqref{eq:triple} to $n$ variables although it doesn't really give any further identities. Define the $n\times n$ skew-symmetric matrix $E$ by \begin{equation} \label{eq:E} E_{ij} = e_i - e_j \end{equation} then $E$ has rank 2 (because it is the difference of two rank 1 matrices) and therefore $\det(E)=0$ for $n > 2$, and by Cayley's theorem on Pfaffians $\pfaffian(E)=0$. For $n=4$ this is equation \eqref{eq:triple}.

If we put $e_i=\wp(x_i)$ then apply \eqref{eq:wpsigma} and multiply out the denominator we get \begin{equation} \label{eq:pfaffian} \pfaffian\left(\sigma(x_i,x_j)\right) = 0 \end{equation} which is an addition formula in $n$ variables. For $n = 4$ this is equation \eqref{eq:tripleg}.

Frobenius-Stickelberger Addition Formula

In their 1877 paper [1], Frobenius and Stickelberger start with the ingenious formula:

\begin{equation} \label{eq:fsz} \begin{vmatrix} 0 & 1 & 1 & \ldots & 1 \\ 1 & \zeta(u_1+v_1) & \zeta(u_1+v_2) & \ldots & \zeta(u_1+v_n) \\ 1 & \zeta(u_2+v_1) & \zeta(u_2+v_2) & \ldots & \zeta(u_2+v_n) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \zeta(u_n+v_1) & \zeta(u_n+v_2) & \ldots & \zeta(u_n+v_n) \\ \end{vmatrix} \space = \space - \frac {\sigma\left(\sum\limits_{i=1}^n (u_i + v_i)\right) \space \prod\limits_{1 \le i \lt j \le n} \space \sigma(u_i - u_j) \sigma(v_i - v_j)} {\prod\limits_{i=1}^n \prod\limits_{j=1}^n \sigma(u_i + v_j)} \end{equation}

From this they obtain their classic addition formula \begin{equation} \label{eq:fsn} \begin{vmatrix} 1 & \wp(u_1) & \wp'(u_1) & \ldots & \wp^{(n-2)}(u_1) \\ 1 & \wp(u_2) & \wp'(u_2) & \ldots & \wp^{(n-2)}(u_2) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \wp(u_n) & \wp'(u_n) & \ldots & \wp^{(n-2)}(u_n) \\ \end{vmatrix} \space = \space (-1)^{n-1} \space \prod\limits_{i=1}^{n-1} i! \space \frac {\sigma\left(\sum\limits_{i=1}^n u_i\right) \space \prod\limits_{1 \le i \lt j \le n} \sigma(u_j-u_i)} {\prod\limits_{i=1}^n \sigma(u_i)^n} \end{equation} essentially by taking the limit of \eqref{eq:fsz} as $v_i \rightarrow 0$. They also obtain the Kiepert formula \begin{equation} \label{eq:fslimit} \begin{vmatrix} \wp'(u) & \wp''(u) & \ldots & \wp^{(n-1)}(u) \\ \wp''(u) & \wp'''(u) & \ldots & \wp^{(n)}(u) \\ \vdots & \vdots & \ddots & \vdots \\ \wp^{(n-1)}(u) & \wp^{(n)}(u) & \ldots & \wp^{(2n-3)}(u) \\ \end{vmatrix} \space = \space (-1)^{n-1} \space \left(\prod\limits_{i=1}^{n-1} i!\right)^2 \space \frac {\sigma(n u)} {\sigma(u)^{n^2}} \end{equation} by taking the limit of \eqref{eq:fsn} as $u_i \rightarrow u$.

COROLLARY

Using the $\zeta$ addition formula we can also write \eqref{eq:fsz} in terms of $\wp$ as follows \begin{equation} \label{eq:fszp} (\tfrac 1 2)^{n-1} \begin{vmatrix} 0 & 1 & 1 & \ldots & 1 \\ 1 & \frac {\wp'(u_1) - \wp'(v_1)} {\wp(u_1) - \wp(v_1)} & \frac {\wp'(u_1) - \wp'(v_2)} {\wp(u_1) - \wp(v_2)} & \ldots & \frac {\wp'(u_1) - \wp'(v_n)} {\wp(u_1) - \wp(v_n)} \\ 1 & \frac {\wp'(u_2) - \wp'(v_1)} {\wp(u_2) - \wp(v_1)} & \frac {\wp'(u_2) - \wp'(v_2)} {\wp(u_2) - \wp(v_2)} & \ldots & \frac {\wp'(u_2) - \wp'(v_n)} {\wp(u_2) - \wp(v_n)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \frac {\wp'(u_n) - \wp'(v_1)} {\wp(u_n) - \wp(v_1)} & \frac {\wp'(u_n) - \wp'(v_2)} {\wp(u_n) - \wp(v_2)} & \ldots & \frac {\wp'(u_n) - \wp'(v_n)} {\wp(u_n) - \wp(v_n)} \\ \end{vmatrix} \space = \space - \frac {\sigma\left(\sum\limits_{i=1}^n (u_i + v_i)\right) \space \prod\limits_{1 \le i \lt j \le n} \space \sigma(u_i - u_j) \sigma(v_i - v_j)} {\prod\limits_{i=1}^n \prod\limits_{j=1}^n \sigma(u_i + v_j)} \end{equation}

Extended Frobenius-Stickelberger Formula

The classic Frobenius-Stickelberger formula \eqref{eq:fsn} can be extended to general elliptic functions. The set of elliptic functions with poles of order at most $n_j \gt 0$ at $a_j$ for $j=1\dots k$ form a vector space of dimension $n = \sum n_j$. If $f_1 \dots f_n$ is a basis for that vector space then

\begin{equation} \label{eq:fsx} \begin{vmatrix} f_1(u_1) & f_2(u_1) & \ldots & f_n(u_1) \\ f_1(u_2) & f_2(u_2) & \ldots & f_n(u_2) \\ \vdots & \vdots & \ddots & \vdots \\ f_1(u_n) & f_2(u_n) & \ldots & f_n(u_n) \\ \end{vmatrix} \space = \space K \space \frac {\sigma\left(\sum\limits_{i=1}^n u_i - \sum\limits_{j=1}^k n_j a_j\right) \space \prod\limits_{1 \le i \lt j \le n} \sigma(u_j - u_i)} {\prod\limits_{i=1}^n \prod\limits_{j=1}^k \sigma(u_i - a_j)^{n_j}} \end{equation}

where $K$ is a constant independent of the $u_i$. An explicit formula for $K$ can be obtained as follows. Let $R$ be the matrix of the coefficients of the negative powers in the Laurent expansions of $f_i$ at $a_j$. Each column of $R$ corresponds to one of the $f_i$. Each row of $R$ corresponds to the coefficients of $(z-a_j)^l$ in the Laurent expansions of $f_i(z)$ at one particular point $a_j$ and for one particular $l \lt 0$. The order of the rows is taken as, first the coefficients of $(z-a_1)^{-n_1} \ldots (z-a_1)^{-1}$ at $a_1$, then of $(z-a_2)^{-n_2} \ldots (z-a_2)^{-1}$ at $a_2$ etc. Under this ordering we have

\begin{equation} \label{eq:fsxK} K \space = \space \begin{vmatrix} R_{11} & R_{12} & \ldots & R_{1n} \\ R_{21} & R_{22} & \ldots & R_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ R_{n-1,1} & R_{n-1,2} & \ldots & R_{n-1,n} \\ f_1(u) & f_2(u) & \ldots & f_n(u) \\ \end{vmatrix} \quad \prod\limits_{1 \le i \lt j \le k} \sigma(a_i - a_j)^{n_i n_j} \end{equation}

Note $\rank(R) = n - 1$ because the sum of the $k$ rows corresponding to the residues of $f_i$ is a row of zeroes. Due to this the last row of residues of $f_i$ at $a_k$, in the formula for $K$, ends up being replaced by the basis functions evaluated at a completely arbitrary point $u$. This may seem surprising but all it is really saying is that a certain linear combination of the basis functions $f_i(u)$ is constant. We may take $u$ to be one of the poles $a_j$ in which case the last row will consist of the coefficients of the $(z-a_j)^0$ terms in the Laurent expansion of $f_i$ at $a_j$.

Nomenclature

I have called \eqref{eq:fsx} the Extended Frobenius-Stickelberger formula because I need a name for it and don't want to confuse it with the original Frobenius-Stickelberger formula \eqref{eq:fsn}. It is more or less equivalent to formula \eqref{eq:fsz} and is a generalisation of formula \eqref{eq:fsn}. Note there are already Generalised Frobenius-Stickelberger formulae in the literature but these refer to the generalisation of \eqref{eq:fsn} to hyperelliptic $\sigma$ functions. For example see [2]. Formula \eqref{eq:fsx} is also closely related to the Vandermonde determinant formula.

COROLLARY

EXAMPLE

Extended Kiepert Formula

Letting $u_i \rightarrow u$ in \eqref{eq:fsx} yields an extension of the Kiepert formula:

\begin{equation} \label{eq:fsxlimit} \begin{vmatrix} f_1(u) & f_2(u) & \ldots & f_n(u) \\ f_1'(u) & f_2'(u) & \ldots & f_n'(u) \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(n-1)}(u) & f_2^{(n-1)}(u) & \ldots & f_n^{(n-1)}(u) \\ \end{vmatrix} \space = \space K \space \prod\limits_{i=1}^{n-1} {i!} \space \frac {\sigma\left(n u - \sum\limits_{j=1}^k n_j a_j\right)} {\left(\prod\limits_{j=1}^k \sigma(u - a_j)^{n_j}\right)^n} \end{equation}

where $K$ is the constant given in \eqref{eq:fsxK}.

References

[1] F.G. Frobenius and L. Stickelberger Zur Theorie der elliptischen Functionen J. reine angew. Math 83 (1877), 175–179

[2] Yoshihiro Ônishi Determinant Expressions For Hyperelliptic Functions Proceedings of the Edinburgh Mathematical Society, Volume 48, Issue 3, October 2005, pp. 705 - 742