#header,next=MISC.html,prev=RESPONSIVE.html

flow

#flow

#flow \Delta(a,b,c,d,e) = 256a^3e^3 - 192a^2bde^2 - 128a^2c^2e^2 + 144a^2cd^2e - 27a^2d^4 + 144ab^2ce^2 - 6ab^2d^2e - 80abc^2de + 18abcd^3 + 16ac^4e - 4ac^3d^2 - 27b^4e^2 + 18b^3cde - 4b^3d^3 - 4b^2c^3e + b^2c^2d^2

#flow,left

#flow,left \Delta(a,b,c,d,e) = 256a^3e^3 - 192a^2bde^2 - 128a^2c^2e^2 + 144a^2cd^2e - 27a^2d^4 + 144ab^2ce^2 - 6ab^2d^2e - 80abc^2de + 18abcd^3 + 16ac^4e - 4ac^3d^2 - 27b^4e^2 + 18b^3cde - 4b^3d^3 - 4b^2c^3e + b^2c^2d^2

#flow,indent,rowgap=1em

#flow,indent,rowgap=1em \Delta(a,b,c,d,e) = 256a^3e^3 - 192a^2bde^2 - 128a^2c^2e^2 + 144a^2cd^2e - 27a^2d^4 + 144ab^2ce^2 - 6ab^2d^2e - 80abc^2de + 18abcd^3 + 16ac^4e - 4ac^3d^2 - 27b^4e^2 + 18b^3cde - 4b^3d^3 - 4b^2c^3e + b^2c^2d^2

#flow,left,indent,fold=500

#flow,left,indent,fold=500 \Delta(a,b,c,d,e) = 256a^3e^3 - 192a^2bde^2 - 128a^2c^2e^2 + 144a^2cd^2e - 27a^2d^4 + 144ab^2ce^2 - 6ab^2d^2e - 80abc^2de + 18abcd^3 + 16ac^4e - 4ac^3d^2 - 27b^4e^2 + 18b^3cde - 4b^3d^3 - 4b^2c^3e + b^2c^2d^2

#list

#list \alpha, \frac 1 {\alpha}, 1 - \alpha, \frac {\alpha} {\alpha - 1}, \frac {\alpha - 1} {\alpha}, \frac 1 {1 - \alpha}, \beta, \frac 1 {\beta}, 1 - \beta, \frac {\beta} {\beta - 1}, \frac {\beta - 1} {\beta}, \frac 1 {1 - \beta}, \lambda, \frac 1 {\lambda}, 1 - \lambda, \frac {\lambda} {\lambda - 1}, \frac {\lambda - 1} {\lambda}, \frac 1 {1 - \lambda}

fold

#fold

#fold \sqrt[30] {\discrim(a,b,c,d,e,f,g)}\bigint_{C} \frac 1 {\sqrt[3]{ax^6 + bx^5 + cx^4 + dx^3 + ex^2 + fx + g}} dx = \sqrt[30] {\discrim(p,q,r,s,t,u,v)} \bigint_{C'} \frac 1 {\sqrt[3]{py^6 + qy^5 + ry^4 + sy^3 + ty^2 + uy + v}} dy

#fold,end

#fold \sqrt[30] {\discrim(a,b,c,d,e,f,g)} \bigint_{C} \frac 1 {\sqrt[3]{ax^6 + bx^5 + cx^4 + dx^3 + ex^2 + fx + g}} dx = $ \sqrt[30] {\discrim(p,q,r,s,t,u,v)} $ \bigint_{C'} \frac 1 {\sqrt[3]{py^6 + qy^5 + ry^4 + sy^3 + ty^2 + uy + v}} dy

#fold

#fold \sqrt[30] {\discrim(a,b,c,d,e,f,g)} $ \bigint_{C} \frac 1 {\sqrt[3]{ax^6 + bx^5 + cx^4 + dx^3 + ex^2 + fx + g}} dx = $ \sqrt[30] {\discrim(p,q,r,s,t,u,v)} $ \bigint_{C'} \frac 1 {\sqrt[3]{py^6 + qy^5 + ry^4 + sy^3 + ty^2 + uy + v}} dy

#fold2 with 2 parts - doesn't look good

#fold2 \sqrt[30] {\discrim(a,b,c,d,e,f,g)} $ \bigint_{C} \frac 1 {\sqrt[3]{ax^6 + bx^5 + cx^4 + dx^3 + ex^2 + fx + g}} dx = $$ \sqrt[30] {\discrim(p,q,r,s,t,u,v)} $ \bigint_{C'} \frac 1 {\sqrt[3]{py^6 + qy^5 + ry^4 + sy^3 + ty^2 + uy + v}} dy

#fold2 with 3 parts - doesn't look good

#fold2,debug \beta \space = \space \zeta^i \alpha, \quad$ \frac 1 {\zeta^i \alpha}, \quad$ \zeta^j \frac {1 - \zeta^i\alpha} {1 + \zeta^i\alpha} $$ \qquad \textsf{where} \qquad $$ i=0\ldots 3, \enspace j=0 \ldots 3

train

#train,width=1200,flow,fold

#train,width=1200,flow,fold \small{\begin{vmatrix} a & b & c \\ p & q & r \\ q & r & s \\ \end{vmatrix}} $ = $ a(qs - r^2) + b(qr - ps) + $ c(pr - q^2) $$ = $ - \tfrac 1 {18} ap^2\big[ $ (\alpha - \mu)(\beta - \mu)(\nu - \omega)^2 + $ (\alpha - \nu)(\beta - \nu)(\mu - \omega)^2 + $ (\alpha - \omega)(\beta - \omega)(\mu - \nu)^2\big]

#train,width=1200,flow,fold=430

#train,width=1200,flow,fold=430 \small{\begin{vmatrix} a & b & c \\ p & q & r \\ q & r & s \\ \end{vmatrix}} $ = $ a(qs - r^2) + b(qr - ps) + c(pr - q^2) $$ = $ - \tfrac 1 {18} ap^2\big[ $ (\alpha - \mu)(\beta - \mu)(\nu - \omega)^2 + $ (\alpha - \nu)(\beta - \nu)(\mu - \omega)^2 + $ (\alpha - \omega)(\beta - \omega)(\mu - \nu)^2\big]