Sandbox
$$ A + \dots + Z \qquad A \dots Z \qquad + \dotsb + \qquad , \dotsc , \qquad \int \dotsi \int \qquad x_1 x_2 \dotsm x_n \qquad A_1 \dotso A_n $$ $$ A \ldots A \cdots A \ddots A \iddots A \vdots A $$Standard Examples
$$ \lim_{n \rightarrow +\infty} \frac {\sqrt{2\pi n}} {n!} \left(\frac n e \right)^n = 1 $$ $$ \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + x}}}}}}} $$ $$ \begin{aligned} \vec{\nabla} \cdot \vec{B} &= 0 \\ \vec{\nabla} \times \vec{E} + \frac{\partial B}{\partial t} &= 0 \\ \vec{\nabla} \cdot \vec{E} &= \frac{\rho}{\epsilon_0} \\ \vec{\nabla} \times \vec{B} - \frac{1}{c^2} \, \frac{\partial E}{\partial t} &= \mu_0 \vec{J} \end{aligned} $$ $$ x = {-b \pm \sqrt{b^2-4ac} \over 2a} $$ $$ f(a) = \frac{1}{2\pi i} \oint\frac{f(z)}{z-a}dz $$ $$ \cos(\theta+\phi)=\cos(\theta)\cos(\phi) - \sin(\theta)\sin(\phi) $$ $$ \int_D ({\nabla\cdot} F)dV=\int_{\partial D} F\cdot ndS $$ $$ \vec{\nabla} \times \vec{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right) \mathbf{i} + \left( \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \right) \mathbf{j} + \left( \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) \mathbf{k} $$ $$ \sigma = \sqrt{ \frac{1}{N} \sum_{i=1}^N (x_i -\mu)^2} $$ $$ (\nabla_X Y)^k = X^i (\nabla_i Y)^k = X^i \left( \frac{\partial Y^k}{\partial x^i} + \Gamma_{im}^k Y^m \right) $$Greek Letters
Greek letters are taken from the TeXBook, the LaTeX unicode package and the Unicode Mathematical Alphanumeric Symbols block.
The TeXBook has these var commands for the italic versions of the non Latin-like Greek capital letters.
$$ \varDelta \varGamma \varLambda \varOmega \varPhi \varPi \varPsi \varSigma \varTheta \varUpsilon \varXi $$All the Latin-like Greek capital letters except Digamma render identical to their Latin counterparts.
$$ \mathrm{A\Alpha B\Beta E\Epsilon F\Digamma H\Eta I\Iota K\Kappa M\Mu N\Nu O\Omicron P\Rho T\Tau X\Chi Z\Zeta} $$Accents
$$ \acute x \quad \bar x \quad \breve x \quad \check x \quad \dot x \quad \ddot x \quad \dddot x \quad \ddddot x \quad \grave x \quad \hat x \quad \mathring x \quad \tilde x \quad \vec x$$Check that non-wide accents are not erroneously made wide.
$$ \acute{abc} \quad \bar{abc} \quad \breve{abc} \quad \check{abc} \quad \dot{abc} \quad \ddot{abc} \quad \dddot{abc} \quad \ddddot{abc} \quad \grave{abc} \quad \hat{abc} \quad \mathring{abc} \quad \tilde{abc} \quad \vec{abc} $$Most math fonts do not have stretchy versions of the LaTeX wide accent characters. Even when they do, the browsers aren't able to use them correctly. So TeXZilla draws them using SVG.
$$ \widehat| \quad \widehat\imath \quad \widehat\jmath \qquad \widehat{x} \quad \widecheck{x} \quad \widetilde{x} \quad \utilde{x} \qquad \widehat{abc} \quad \widecheck{abc} \quad \widetilde{abc} \quad \utilde{abc} \qquad \widehat{0123456789} \quad \widecheck{0123456789} \quad \widetilde{0123456789} \quad \utilde{0123456789} $$ $$ \overleftarrow{ABC} \quad \overleftrightarrow{12345} \quad \overline{x + y} \quad \overparen{x \ldots z} \quad \overrightarrow{abc} $$ $$ \underleftarrow{ABC} \quad \underleftrightarrow{12345} \quad \underline{x + y} \quad \underparen{x \ldots z} \quad \underrightarrow{abc} $$Alphabets
Normal
The default alphabet follows the TeX italicization rules: all Latin and Greek letters are italic except uppercase Greek is upright.
This includes \nabla ∇ which is upright and \partial ∂ which is italic.
This rule can be changed with the italics configuration parameter.
Roman
The Roman alphabet has all letters upright except Greek lowercase which are italic.
$$ \mathrm{0123456789 \enspace ABCDEFGHIJKLMNOPQRSTUVWXYZ \enspace abcdefghijklmnopqrstuvwxyz \enspace \imath \jmath} $$ $$ \mathrm{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta \Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi \Rho \Thetasym \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega \nabla \Digamma \enspace \alpha \beta \gamma \delta \varepsilon \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi \omicron \pi \rho \varsigma \sigma \tau \upsilon \varphi \chi \psi \omega \partial \epsilon \vartheta \varkappa \phi \varrho \varpi \digamma} $$Upright
$$ \mathup{0123456789 \enspace ABCDEFGHIJKLMNOPQRSTUVWXYZ \enspace abcdefghijklmnopqrstuvwxyz \enspace \imath\jmath} $$ $$ \mathup{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta \Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi \Rho \Thetasym \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega \nabla \Digamma \enspace \alpha \beta \gamma \delta \varepsilon \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi \omicron \pi \rho \varsigma \sigma \tau \upsilon \varphi \chi \psi \omega \partial \epsilon \vartheta \varkappa \phi \varrho \varpi \digamma} $$
All the following math alphabets are generated by mapping latin letters and numbers according to the Mathematical Alphanumeric Symbols unicode block.
They are near identical to the alphabets defined in the now obsolete latex stix package.
Italic
$$ \mathit{ABCDEFGHIJKLMNOPQRSTUVWXYZ \enspace abcdefghijklmnopqrstuvwxyz \enspace \imath\jmath} $$ $$ \mathit{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta \Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi \Rho \Thetasym \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega \nabla \enspace \alpha \beta \gamma \delta \varepsilon \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi \omicron \pi \rho \varsigma \sigma \tau \upsilon \varphi \chi \psi \omega \partial \epsilon \vartheta \varkappa \phi \varrho \varpi} $$Bold
$$ \mathbf{0123456789 \enspace ABCDEFGHIJKLMNOPQRSTUVWXYZ \enspace abcdefghijklmnopqrstuvwxyz} $$ $$ \mathbf{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta \Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi \Rho \Thetasym \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega \nabla \Digamma \enspace \alpha \beta \gamma \delta \varepsilon \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi \omicron \pi \rho \varsigma \sigma \tau \upsilon \varphi \chi \psi \omega \partial \epsilon \vartheta \varkappa \phi \varrho \varpi \digamma} $$Bold Italic
$$ \mathbfit{ABCDEFGHIJKLMNOPQRSTUVWXYZ \enspace abcdefghijklmnopqrstuvwxyz} $$ $$ \mathbfit{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta \Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi \Rho \Thetasym \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega \nabla \enspace \alpha \beta \gamma \delta \varepsilon \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi \omicron \pi \rho \varsigma \sigma \tau \upsilon \varphi \chi \psi \omega \partial \epsilon \vartheta \varkappa \phi \varrho \varpi} $$Sans Serif
$$ \mathsf{0123456789 \enspace ABCDEFGHIJKLMNOPQRSTUVWXYZ \enspace abcdefghijklmnopqrstuvwxyz} $$The sans-serif upright Greek glyphs come from the STIX Two Math private use area.
$$ \mathsf{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta \Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi \Rho \Thetasym \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega \nabla \enspace \alpha \beta \gamma \delta \varepsilon \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi \omicron \pi \rho \varsigma \sigma \tau \upsilon \varphi \chi \psi \omega \partial \epsilon \vartheta \varkappa \phi \varrho \varpi} $$Sans Serif Italic
$$ \mathsfit{ABCDEFGHIJKLMNOPQRSTUVWXYZ \enspace abcdefghijklmnopqrstuvwxyz} $$The sans-serif italic Greek glyphs come from the STIX Two Math private use area.
$$ \mathsfit{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta \Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi \Rho \Thetasym \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega \nabla \enspace \alpha \beta \gamma \delta \varepsilon \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi \omicron \pi \rho \varsigma \sigma \tau \upsilon \varphi \chi \psi \omega \partial \epsilon \vartheta \varkappa \phi \varrho \varpi} $$Bold Sans Serif
$$ \mathbfsf{0123456789 \enspace ABCDEFGHIJKLMNOPQRSTUVWXYZ \enspace abcdefghijklmnopqrstuvwxyz} $$ $$ \mathbfsf{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta \Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi \Rho \Thetasym \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega \nabla \enspace \alpha \beta \gamma \delta \varepsilon \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi \omicron \pi \rho \varsigma \sigma \tau \upsilon \varphi \chi \psi \omega \partial \epsilon \vartheta \varkappa \phi \varrho \varpi} $$Bold Sans Serif Italic
$$ \mathbfsfit{ABCDEFGHIJKLMNOPQRSTUVWXYZ \enspace abcdefghijklmnopqrstuvwxyz} $$ $$ \mathbfsfit{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta \Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi \Rho \Thetasym \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega \nabla \enspace \alpha \beta \gamma \delta \varepsilon \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi \omicron \pi \rho \varsigma \sigma \tau \upsilon \varphi \chi \psi \omega \partial \epsilon \vartheta \varkappa \phi \varrho \varpi} $$Blackboard
$$ \mathbb{0123456789 \enspace ABCDEFGHIJKLMNOPQRSTUVWXYZ \enspace abcdefghijklmnopqrstuvwxyz} $$There are four double-struck Greek glyphs outside the Mathematical Alphanumeric Symbols block.
$$ \mathbb{\Pi \Gamma \pi \gamma} $$Blackboard Italic
The following double-struck italic glyphs come from the STIX Two Math private use area (except Ddeij which are from the Letterlike Symbols block).
$$ \mathbbit{ABCDEFGHIJKLMNOPQRSTUVWXYZ \enspace abcdefghijklmnopqrstuvwxyz} $$Fraktur
$$ \mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ \enspace abcdefghijklmnopqrstuvwxyz} $$Bold Fraktur
$$ \mathbffrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ \enspace abcdefghijklmnopqrstuvwxyz} $$The script style glyphs come in two style variants Chancery and Roundhand which share the same unicodes. They are distinguished using a font-specific font variant style.
Calligraphic
$$ \mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ} $$Bold Calligraphic
$$ \mathbfcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ} $$Script
$$ \mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ \enspace abcdefghijklmnopqrstuvwxyz} $$Bold Script
$$ \mathbfscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ \enspace abcdefghijklmnopqrstuvwxyz} $$Teletype
$$ \mathtt{0123456789 \enspace ABCDEFGHIJKLMNOPQRSTUVWXYZ \enspace abcdefghijklmnopqrstuvwxyz} $$Special Font Effects
Bold
Bold symbols are a font style generated by mapping all the glyphs in the Mathematical Alphanumeric Symbols unicode block to their bold counterparts.
$$ \boldsymbol {0123456789 \enspace ABCDEFGHIJKLMNOPQRSTUVWXYZ \enspace abcdefghijklmnopqrstuvwxyz\imath\jmath} $$ $$ \boldsymbol { \mathup{ABCDEFGHIJKLMN} \enspace \mathsfit{OPQRSTUVWXYZ \enspace abcdefghijklmn} \enspace \mathup{opqrstuvwxyz} } $$ $$ \boldsymbol {\Alpha\Beta\Gamma\Delta\Epsilon\Zeta\Eta\Theta\Iota\Kappa\Lambda\Mu\Nu \Xi\Omicron\Pi\Rho\Thetasym\Sigma\Tau\Upsilon\Phi\Chi\Psi\Omega\nabla\Digamma \enspace \varDelta\varGamma\varLambda\varOmega\varPhi\varPi\varPsi\varSigma\varUpsilon\varXi} $$ $$ \boldsymbol {\alpha\beta\gamma\delta\varepsilon\zeta\eta\theta\iota\kappa\lambda\mu\nu \xi\omicron\pi\rho\varsigma\sigma\tau\upsilon\varphi\chi\psi\omega \enspace \partial\epsilon\vartheta\varkappa\phi\varrho\varpi\digamma} $$Old Style Numerals
Old style numerals are taken from the current math font if it has them (most including STIX Two Math do not). Otherwise they are taken from the system cursive font.
$$ 0123456789 \qquad \oldstyle 0123456789 $$Handwriting
Experimental handwriting simulation obtained by combining a math and non-math font together.
Roman letters in the \mathnormal alphabet and text in \text and a few other math symbols are rendered in the non-math font.
PlayPen Sans is the only handwriting style font with Greek letters currently in Google Fonts.
$$ \setfont{PLAY} \cos \pi/3 \geq 0 \qquad |\arccos 45\degree| \neq 0 \qquad 7 + (3 \times 12) \div 9 - 5 \leq 10 \qquad e^x = \lim_{n\rightarrow\infty} \left(1 + x/n\right)^n $$ $$ \setfont{PLAY} \cos(\alpha+\beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta $$ $$ \setfont{PLAY} \Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta \Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi \Rho \Thetasym \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega \nabla \Digamma \enspace \alpha \beta \gamma \delta \varepsilon \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi \omicron \pi \rho \varsigma \sigma \tau \upsilon \varphi \chi \psi \omega \partial \epsilon \vartheta \varkappa \phi \varrho \varpi \digamma $$Big Operators, Integrals And Limits
$$ \sum_{i=1}^n X_i \quad \prod_{i=1}^n X_i \quad \coprod_{i=1}^n X_i \quad \bigcap_{i=1}^n X_i \quad \bigcup_{i=1}^n X_i \quad \biguplus_{i=1}^n X_i $$ $$ \bigsqcup_{i=1}^n X_i \quad \bigwedge_{i=1}^n X_i \quad \bigvee_{i=1}^n X_i \quad \bigoplus_{i=1}^n X_i \quad \bigotimes_{i=1}^n X_i \quad \bigodot_{i=1}^n X_i $$Additional big operators are defined in the unicode standard.
$$ \bigtimes_{i=1}^n V_i \quad \bigcupdot_{i=1}^n X_i \quad \bigsqcap_{i=1}^n X_i \quad \bigtalloblong_{i=1}^n X_i \quad \Bbbsum_{i=1}^n X_i $$ $$ \int_0^\infty dx \quad \iint_R dx dy \quad \iiint_R dx dy dz \quad \iiiint_R dw dx dy dz \quad \idotsint $$ $$ \oint_C dx \quad \ointctrclockwise_C dx \quad \varointclockwise_C dx \quad \oiint_C dx dy \quad \oiiint_C dx dy dz \quad \intop_R dx \quad \ointop_R dx $$ $$ \lim_{n\rightarrow\infty} x_i \quad \inf_{n\rightarrow\infty} x_i \quad \sup_{n\rightarrow\infty} x_i \quad \limsup_{n\rightarrow\infty} x_i \quad \liminf_{n\rightarrow\infty} x_i $$ $$ \displaystyle \sum_{i=1}^n \enspace \sum\limits_{i=1}^n \enspace \sum\nolimits_{i=1}^n \qquad \textstyle \sum_{i=1}^n \enspace \sum\limits_{i=1}^n \enspace \sum\nolimits_{i=1}^n $$KaTeX has a command to create large operators.
$$ \operatornamewithlimits{limit}_{x \rightarrow \infty} f(x) \qquad \textstyle \operatornamewithlimits{limit}_{x \rightarrow \infty} f(x) $$Brackets
$$ {\tiny\Bigg(\bigg(\Big(\big((Aa)\big)\Big)\bigg)\Bigg) } {\scriptsize Aa} {\small Aa } {\normalsize Aa} {\large Aa} {\Large Aa} {\LARGE Aa} {\huge Aa} {\Huge\Bigg(\bigg(\Big(\big((Aa)\big)\Big)\bigg)\Bigg)} $$ $$ ( \big( \Big( \bigg( \Bigg( \qquad \Big| \Big\rvert \Big\lvert $$ $$ \left| \left\langle \left\| \left\{ \left[ \left( {\large \sqrt[3]{x \over y}} \right) \right] \right\} \right\| \right\rangle \right| $$ $$ \begin{vmatrix} a & b \\ c & d \end{vmatrix} / \begin{vmatrix} w & x \\ y & z \end{vmatrix} \qquad \left. \begin{vmatrix} a & b \\ c & d \end{vmatrix} \middle/ \begin{vmatrix} w & x \\ y & z \end{vmatrix} \right. $$ $$ \begin{vmatrix} a & b \\ c & d \end{vmatrix} \backslash \begin{vmatrix} w & x \\ y & z \end{vmatrix} \qquad \left. \begin{vmatrix} a & b \\ c & d \end{vmatrix} \middle\backslash \begin{vmatrix} w & x \\ y & z \end{vmatrix} \right. $$Bracket spacing test - on Chrome there is too much spacing especially for ( and ). This is a bug in Chrome MathML which could be worked around by setting negative margins ...
$$ 2^{\left(x\right)} \enspace 2^{\left[x\right]} \enspace 2^{\left|x\right|} \enspace 2^{\left\{x\right\}} \enspace 2^{\left\|x\right\|} \enspace 2^{\left\langle x \right\rangle} $$Tests for vertical brackets.
$$ \bigl\rvert $$ $$ \left\rvert \middle\vert \right\lvert $$ $$ \bra{\phi} \quad \ket{\psi} \quad \braket{ \phi | \partial^2 / \partial t^2 | \psi }\quad \braket{ \phi \| \partial^2 / \partial t^2 \| \psi } \quad \set{ x \in \R^2 | 0 \lt {|x|} \lt 5 } $$ $$ \Bra{\phi} \quad \Ket{\psi} \quad \Braket{ \phi | \frac{\partial^2}{\partial t^2} | \psi } \quad \Braket{ \phi \| \frac{\partial^2}{\partial t^2} \| \psi } \quad \Set{ x \in \R^2 | 0 \lt {|x| \over 5} \lt 1 } $$
MathJax4 sometimes interprets \vert as Braket divider - LaTeX, MathJax3, KaTeX and TeXZilla do not.
Dots
$$ A + \dots + Z \qquad A \dots Z \qquad + \dotsb + \qquad , \dotsc , \qquad \int \dotsi \int \qquad x_1 x_2 \dotsm x_n \qquad A_1 \dotso A_n $$ $$ A \ldots A \cdots A \ddots A \iddots A \vdots A $$Environments
TeX and AMS pseudo-environments
$$ \displaylines {x + 2y = 3 \cr x = y - 4} $$ $$ \eqalign {x + 2y &= 3 \cr x &= y - 4} $$ $$ g_2 = 60 \sum_{\substack{\omega \ne 0 \\ \omega \in \Omega}} \frac 1 {\omega^4} $$AMS environments excluding matrices and arrays
$$ |x| = \begin{cases} x & \text{if } x\ge 0\\ -x & \text{if } x\lt 0 \end{cases} $$ $$ f(x) = \begin{cases} x & \text{if } x\ge \sum_i y_i \\ -x & \text{if } x\lt \sum_i y_i \end{cases} $$ $$ f(x) = \begin{dcases} x & \text{if } x\ge \sum_i y_i \\ -x & \text{if } x\lt \sum_i y_i \end{dcases} $$ $$ \begin{aligned} x + 2y &= 3 \\ x &= y - 4 \end{aligned} $$ $$ \begin{gathered} x + 2y = 3 \\[1.3em] x = y - 4 \end{gathered} $$ $$ \begin{multline} x = 3 + 6a_1 + 7a_2 + 8a_3 + \\ 19b_1 - 20b_2 - 14b_3 + \\ \shoveright + 1999c_1 + 47c_2 - c_3 \\ \shoveleft y = 99 - 123d_1 - 321d_2 + 111d_3 - \\ 100e_1 + 200e_2 + 300e_3 \end{multline} $$Error Reporting
Commands that are used out of context and should generate errors.
$$ $ \quad & \quad \\ \quad \hline \quad \hdashline \quad \shoveleft \quad \shoveright \quad \of \quad {x \over y \over z} \quad #1 $$Commands with invalid arguments should generate errors.
$$ \left+ \quad \middle- \quad \right@ \quad \Big* \quad \genfrac a \quad \unicode{9999999} \quad \hspace{x} \quad \left $$Fractions
$$ \genfrac \{\} {2pt} {0} ab \quad \genfrac [ ] {} {1} ab \quad \genfrac [ ) {} {2} ab \quad \genfrac ( ] {} {3} ab $$ $$ \frac{2}{1+\frac{2}{1+\frac{2}{1}}} \quad \cfrac{2}{1+\cfrac{2}{1+\cfrac{2}{1}}} $$ $$ { a + b \over c + d} \quad \binom n 3 \quad { n+m \choose k} \quad \frac a b \quad \tfrac a b \quad {a \atop b} \quad {a \brace b} \quad {a \brack b} \quad { a \above {1pt} b } $$ $$ \left\langle a \over b \middle| c \over d \right\rangle $$Functions
$$ \cos\theta + \sin\theta + \tan\theta + \cot\theta + \sec\theta + \csc\theta + \arccos z + \arcsin z + \arctan z $$ $$ \cosh z + \sinh z + \tanh z + \coth z + \exp z + \log z + \lg z + \ln z + \arg z + \operatorname{sinc} z $$ $$ \deg V + \det V + \dim V + \gcd(a,b) + \hom V + \ker V + \Pr V $$ $$ x \mod 3 \qquad x \pmod 3 \qquad x \bmod 3 $$Logo's
$$ \TeX \quad \LaTeX \quad \KaTeX \quad \TeXZilla $$Matrices
TeX
$$ \left| \matrix{1 & 23 & 456 & 4 \\ 789 & 0 & 12345 & 5 \\ 789 & 0 & 12345 & 5 \\ 789 & 0 & 12345 & 5} \right| \qquad \pmatrix{1 & 23 & 456 \\ 789 & 0 & 12345} $$AMS
$$ \begin{matrix} a & b \\ c & d \end{matrix} \qquad \begin{bmatrix} a & b \\ c & d \end{bmatrix}^3 \qquad \begin{pmatrix} a & b \\ c & d \end{pmatrix}^3 \qquad \begin{vmatrix} a & b \\ c & d \end{vmatrix}^3 \qquad \begin{Bmatrix} a & b \\ c & d \end{Bmatrix}^3 \qquad \begin{Vmatrix} a & b \\ c & d \\ \end{Vmatrix}^3 \qquad $$ $$ \begin{vmatrix} 1 & f(z_1) & f(z_1)^2 \\ 1 & f(z_2) & f(z_2)^2 \\ 1 & f(z_3) & f(z_3)^2 \\ \end{vmatrix} \space = \space 0 \qquad \begin{vmatrix} 1 & f(z_1) & f(z_1)^2 & f'(z_1) \\ 1 & f(z_2) & f(z_2)^2 & f'(z_2) \\ 1 & f(z_3) & f(z_3)^2 & f'(z_3) \\ 1 & f(z_4) & f(z_4)^2 & f'(z_4) \\ \end{vmatrix} \space = \space 0 $$ $$ \begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \quad \left( \begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \quad \left| \begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right|^2 $$Not And Cancel
Check that not'd glyphs are being correctly mapped to their unicode "not" versions.
$$ =\not= \lt\not\lt \leq\not\leq \gt\not\gt \geq\not\geq \equiv\not\equiv \in\not\in \ni\not\ni \mid\not\mid \parallel\not\parallel \approx\not\approx \exists\not\exists \checkmark\not\checkmark $$Check that not'd glyphs which don't have unicode versions are overlayed with a slash.
$$ \not \alpha \quad \not A \quad \not {\bar X} \quad \bar {\not X} \quad \not 2 \quad \not {\tfrac 1 2} $$
Unlike the \not command the \centernot command is always an overlay.
The <menclose> element is deprecated in MathML Core.
The effect is now implemented with an SVG overlay.
Numbers
Consecutive digits are coalesced in the interpreter to provide a more natural but not strictly LaTeX-compatible syntax.
$$ 12^34 \quad \frac 12 34 \quad \frac 1 234 \quad -123 \quad {−123} $$
This can be turned off using the %LATEX comment.
LaTeX style number formatting.
$$ 1{,}234{,}567.89 \qquad 1\,234\,567 \qquad (1234.56) \qquad {-1.234} \times 10^{-9} $$
In TeXZilla you can also enter numbers using the \mn command.
Operators With Special Spacing
Logic.
$$ F \iff G \quad F \implies G \quad G \impliedby F $$Arrows.
$$ F \Longleftrightarrow G \quad F \Longrightarrow G \quad G \Longleftarrow F $$Punctuation.
$$ a,b \qquad a;b \qquad a\colon b \qquad a?b \qquad a\&b \qquad a\ldotp b \qquad a\cdotp b $$Operators.
$$ A \setminus B \qquad a/b \qquad a\backslash b \qquad a\_b \qquad a\And b \qquad a.b \qquad a\cdot b $$Prefix And Postfix Operators
Browsers automatically typeset leading + and - signs as prefix operators. TeXZilla also makes them a prefix operator if they follow a non-postfix operator.
$$ +1 \quad +1 \quad {+1} \quad {n \rightarrow +\infty} \quad 6 \times -3 + 8 = -10 \quad 1, -2, 3, -4 $$ $$ -x \quad -x \quad {-x} \quad (-x) \quad |-x| - |y| \quad \lvert-x\rvert - |y| \quad \{-x\} \quad {n \rightarrow -x} \quad 6 \times -x $$ $$ -{a \over b} \quad -{a \over b} \quad {-{a \over b}} \quad {n \rightarrow -{a \over b}} \quad 6 \times -{a \over b} = 18$$
Browsers automatically recognise <mo>!</mo> as the factorial postfix operator and render it correctly.
Most also recognise !! as the double factorial operator, but Safari does not.
Workaround is to render it as two single factorial ops.
There is no special command to create unary operators but they can be forced by enclosing the expressions in curly brackets.
$$ 1 -2 \text{ vs } 1 {-2} $$Primes
Special unicode characters are used for 1 to 4 primes, but for 5 and above they are typeset separately.
$$ d' e'' f''' g'''' h''''' \quad d_1' e_1'' f_1''' g_1'''' h_1''''' \quad d_1'^2 e_1''^2 f_1'''^2 g_1''''^2 h_1'''''^2 $$To typeset exponents at the same level as the primes put them together in a superscript.
$$ d_1^{\prime 2} e_1^{\prime\prime 2} f_1^{\prime\prime\prime 2} g_1^{\prime\prime\prime\prime 2} h_1^{\prime\prime\prime\prime\prime 2} $$Unlike LaTeX, TeXZilla treats primes on large operators as a special idiom and formats them appropriately.
$$ \sum'_{x \in A} f(x) \qquad \Bbbsum'_{x \in A} f(x) $$Problematic Glyphs
These not'd glyphs do not have assigned unicodes.
$$ \begin{array}{} \approxeq&\not\approxeq&\centernot\approxeq\\ \bumpeq&\not\bumpeq&\centernot\bumpeq\\ \Bumpeq&\not\Bumpeq&\centernot\Bumpeq\\ \ggg&\not\ggg&\centernot\ggg\\ \geqq&\ngeqq&\centernot\geqq\\ \geqslant&\ngeqslant&\centernot\geqslant\\ \gg&\not\gg&\centernot\gg\\ \leqq&\nleqq&\centernot\leqq\\ \leqslant&\nleqslant&\centernot\leqslant\\ \ll&\not\ll&\centernot\ll\\ \lll&\not\lll&\centernot\lll\\ \sqsubset&\not\sqsubset&\centernot\sqsubset\\ \sqsupset&\not\sqsupset&\centernot\sqsupset\\ \subseteqq&\nsubseteqq&\centernot\subseteqq\\ \supseteqq&\nsupseteqq&\centernot\supseteqq\\ \end{array} $$These glyphs have the same unicodes as their variants.
$$ \lneqq \quad \lvertneqq \quad \gneqq \quad \gvertneqq \quad \emptyset \quad \varnothing \quad \propto \quad \varpropto $$ $$ A \smile B \quad A \smallsmile B \quad A \frown B \quad A \smallfrown B \quad A \setminus B \quad A \smallsetminus B$$ $$ A \mid B \quad A \shortmid B \quad A \nmid B \quad A \nshortmid B \quad A \parallel B \quad A \shortparallel B \quad A \nparallel B \quad A \nshortparallel B \quad A \not\shortparallel B $$ $$ \left\Vvert a \over b \right\Vvert \quad \Bbbsum_i x_i \quad \textstyle \Bbbsum_i x_i $$Size
$$ \rm \tiny tiny \scriptsize ~scriptsize \small ~small \normalsize ~normalsize \large ~large \Large ~Large \LARGE ~LARGE \huge ~huge \Huge ~Huge $$ $$ \Huge \TeX \enspace\LaTeX \enspace\KaTeX \enspace\TeXZilla $$Spaces and Phantom
$$ A \hspace{-1em} A \! A \, A \> A \; A \enspace A \quad A \qquad A \hspace{4em} A \ A \hspace{3,2em} A $$ $$ . \hspace 1.5 in . \hspace 1.5 cm . \hspace 1.5 pc . \hspace 1.5 mm . \hspace 1.5 pt . \hspace 1.5 px . \quad | \quad . \hspace 1.5 em . \hspace 1.5 ex . \hspace 1.5 mu . $$ $$ \boxed{aA} \space \boxed{a\phantom{A}} \space \boxed{a\vphantom{A}} \space \boxed{a\hphantom{A}} $$Square Roots
$$ \sqrt 3 \qquad \sqrt[2] 3 \qquad \root 2 \of 3 \qquad \sqrt [n+m] {N+M} \qquad \root n+m \of N+M $$Subscript / Superscript
$$ {^{sup}} \quad {_{sub}} \quad {_{sub}^{sup}} \quad X_{sub} \quad X^{sup} \quad X_{sub}^{sup} \quad X^{sup}_{sub} $$ $$ \sideset {_1^2} {} X \quad \sideset {} {_1^2} X \quad \sideset {^2} {_3^4} X \quad \sideset {_1} {_3^4} X \quad \sideset {_1^2} {^4} X \quad \sideset {_1^2} {_3} X \quad \sideset {_1^2} {_3^4} X \quad \sideset {_{12}^{34}} {_{56}^{78}} X $$Tables
$$ \begin{array}{lcr} a & b & c \\ xxx & yyy & zzz \end{array} $$ $$ \begin{array}{|lcr} \hline a & b & c \\ xxx & yyy & zzz \end{array} $$ $$ \begin{array}{l:cr} a & b & c \\ \hline xxx & yyy & zzz \end{array} $$ $$ \begin{array}{lcr|} a & b & c \\ \hdashline xxx & yyy & zzz \end{array} $$ $$ \begin{array}{|l|c|r|} \hline a & b & c \\ \hline xxx & yyy & zzz \\ \hline \end{array} $$ $$ \begin{array}{:l:c:r:} \hdashline a & b & c \\ \hdashline xxx & yyy & zzz \\ \hdashline \end{array} $$ $$ \begin{subarray}{lcr} a & b & c \\ xxx & yyy & zzz \end{subarray} $$Text
The \text command uses the current math font to render any unicode characters as normal text.
OpenType math fonts have a good repertoire of European characters and fall back seemlessly to system fonts for CJK etc.
The \textit, \textbf etc. commands are different. They are only suitable for rendering a short string of Latin and Greek letters and numbers with the same "look and feel" as the math font.
They use the Mathematical Alphanumeric Symbols unicode block with the current math font to obtain the different font styles.
The one exception is \textsf with a handwriting font will render the same as \text.
Text accented using unicode diacritics.
$$ \text{x̀ x́ x̂ x̃ x̄ x̅ x̆ ẋ ẍ x̉ x̊ x̋ x̌ x̍ x̎ x̏ Å} $$Symbols that are rendered as text.
$$ 5.76\Angstrom \quad 10\celsius \quad 72\fahrenheit \quad 143\kelvin \quad 12.3\ohm \quad 10\cent \quad \$20 \quad \euro50 \quad \pounds100 \quad \yen200 $$ $$ \setfont{PLAY} 5.76\Angstrom \quad 10\celsius \quad 72\fahrenheit \quad 143\kelvin \quad 12.3\ohm \quad 10\cent \quad \$20 \quad \euro50 \quad \pounds100 \quad \yen200 $$
All \text... commands interpret all input, including space, as unicode text.
However for technical reasons {, } and $ must be preceded by a \.
Under / Over
$$ \overset {over} {ABCDEFGHI} \quad \underset {under} {ABCDEFGHI} \quad \overunderset {over} {under} {ABCDEFGHI} $$ $$ \overbrace {ABCDEFGHI}_{under}^{over} \quad \overbracket {ABCDEFGHI}_{under}^{over} \quad \overparen {ABCDEFGHI}_{under}^{over} $$ $$ \underbrace {ABCDEFGHI}_{under}^{over} \quad \underbracket {ABCDEFGHI}_{under}^{over} \quad \underparen {ABCDEFGHI}_{under}^{over} $$ $$ F \xmapsto[under]{over} G\quad F \xrightarrow[under]{over} G \quad F \xleftarrow[under]{over} G\quad a \xleftrightarrow[{\tiny under \space very \space long}]{over} b \quad A \xLeftarrow[under]{over} B \quad B \xRightarrow[under]{over} C\quad C \xLeftrightarrow[under]{over} D $$ $$ D \xhookleftarrow[under]{over} E \quad E \xhookrightarrow[under]{over} F \quad F \xtofrom[under]{over} G \quad G \xtwoheadleftarrow[under]{over} H \quad H \xtwoheadrightarrow[under]{over} I \quad I \xlongequal[under]{over} J $$Unicode
About 75% of LaTeX commands map directly to a unicode code point. Those codepoints can be used as a synonym for the corresponding LaTeX command. When a unicode does not map to a known LaTeX command, a best guess is generated based on the unicode block.
$$ \sin(𝛼+𝛽) = \sin𝛼\cos𝛽 + \cos𝛼\sin𝛽 $$ $$ 𝒙 = 𝒚 × 𝒛 $$ $$ ∀ 𝑥 ∈ ℂ ~~~ ∃ 𝑦 ∈ ℝ ~~ ∍ ~~ 𝑦^2 ≤ |𝑥| $$
In this formula the Σ is U+2211 N-ARY SUMMATION.
Special Font Features
For testing purposes \text takes an optional argument used to specify font feature settings.
For example to check if the current math font supports old style numerals (eg. Lete Sans Math)
To check if it supports both Chancery and Roundhand scripts (eg. New Computer Modern Math)
$$ \setfont{NCMM} \text{𝒜ℬ𝒞} \quad \text["ss01"]{𝒜ℬ𝒞} $$