#header,next=MISC.html,prev=RESPONSIVE.html

TeX

$ \testsup {AA} {BB}$

MathML

This example demonstrates effect of font on MathML render quality.

$$ \wp^{-1}(x) = \int_{-\infty}^x {1 \over \sqrt{4x^3 - g_2x - g_3}} dx $$
$$ \prod_{0 \le i,j,k,l \le 2} \begin{vmatrix} \sqrt[3]{x_1-e_1} & \phantom{\zeta^0} \sqrt[3]{x_1-e_2} & \phantom{\zeta^0} \sqrt[3]{x_1-e_3} \\ \sqrt[3]{x_2-e_1} & \zeta^i \sqrt[3]{x_2-e_2} & \zeta^j \sqrt[3]{x_2-e_3} \\[1em] \sqrt[3]{x_3-e_1} & \zeta^k \sqrt[3]{x_3-e_2} & \zeta^l \sqrt[3]{x_3-e_3} \\ \end{vmatrix} = 3^{36} \cdot \begin{vmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ \end{vmatrix}^9 \cdot \begin{vmatrix} 1 & e_1 & e_1^2 \\ 1 & e_2 & e_2^2 \\ 1 & e_3 & e_3^2 \\ \end{vmatrix}^9 \cdot \left(\left(\mathfrak{R},\left(\mathfrak{R},\mathfrak{S}\right)_2\right)_2,\left(\mathfrak{S},\left(\mathfrak{S},\mathfrak{R}\right)_2\right)_2\right)_1^3 $$

Response Math

#flow

#flow \Delta(a,b,c,d,e) = 256a^3e^3 - 192a^2bde^2 - 128a^2c^2e^2 + 144a^2cd^2e - 27a^2d^4 + 144ab^2ce^2 - 6ab^2d^2e - 80abc^2de + 18abcd^3 + 16ac^4e - 4ac^3d^2 - 27b^4e^2 + 18b^3cde - 4b^3d^3 - 4b^2c^3e + b^2c^2d^2

#flow,left

#flow,left \Delta(a,b,c,d,e) = 256a^3e^3 - 192a^2bde^2 - 128a^2c^2e^2 + 144a^2cd^2e - 27a^2d^4 + 144ab^2ce^2 - 6ab^2d^2e - 80abc^2de + 18abcd^3 + 16ac^4e - 4ac^3d^2 - 27b^4e^2 + 18b^3cde - 4b^3d^3 - 4b^2c^3e + b^2c^2d^2

#flow,indent,rowgap=1em

#flow,indent,rowgap=1em \Delta(a,b,c,d,e) = 256a^3e^3 - 192a^2bde^2 - 128a^2c^2e^2 + 144a^2cd^2e - 27a^2d^4 + 144ab^2ce^2 - 6ab^2d^2e - 80abc^2de + 18abcd^3 + 16ac^4e - 4ac^3d^2 - 27b^4e^2 + 18b^3cde - 4b^3d^3 - 4b^2c^3e + b^2c^2d^2

#flow,left,indent,fold=500

#flow,left,indent,fold=500 \Delta(a,b,c,d,e) = 256a^3e^3 - 192a^2bde^2 - 128a^2c^2e^2 + 144a^2cd^2e - 27a^2d^4 + 144ab^2ce^2 - 6ab^2d^2e - 80abc^2de + 18abcd^3 + 16ac^4e - 4ac^3d^2 - 27b^4e^2 + 18b^3cde - 4b^3d^3 - 4b^2c^3e + b^2c^2d^2

#list

#list \alpha, \frac 1 {\alpha}, 1 - \alpha, \frac {\alpha} {\alpha - 1}, \frac {\alpha - 1} {\alpha}, \frac 1 {1 - \alpha}, \beta, \frac 1 {\beta}, 1 - \beta, \frac {\beta} {\beta - 1}, \frac {\beta - 1} {\beta}, \frac 1 {1 - \beta}, \lambda, \frac 1 {\lambda}, 1 - \lambda, \frac {\lambda} {\lambda - 1}, \frac {\lambda - 1} {\lambda}, \frac 1 {1 - \lambda}

fold

#fold

#fold \sqrt[30] {\discrim(a,b,c,d,e,f,g)}\int_{C} \frac 1 {\sqrt[3]{ax^6 + bx^5 + cx^4 + dx^3 + ex^2 + fx + g}} dx = \sqrt[30] {\discrim(p,q,r,s,t,u,v)} \int_{C'} \frac 1 {\sqrt[3]{py^6 + qy^5 + ry^4 + sy^3 + ty^2 + uy + v}} dy

#fold,end

#fold \sqrt[30] {\discrim(a,b,c,d,e,f,g)} \int_{C} \frac 1 {\sqrt[3]{ax^6 + bx^5 + cx^4 + dx^3 + ex^2 + fx + g}} dx = $ \sqrt[30] {\discrim(p,q,r,s,t,u,v)} $ \int_{C'} \frac 1 {\sqrt[3]{py^6 + qy^5 + ry^4 + sy^3 + ty^2 + uy + v}} dy

#fold

#fold \sqrt[30] {\discrim(a,b,c,d,e,f,g)} $ \int_{C} \frac 1 {\sqrt[3]{ax^6 + bx^5 + cx^4 + dx^3 + ex^2 + fx + g}} dx = $ \sqrt[30] {\discrim(p,q,r,s,t,u,v)} $ \int_{C'} \frac 1 {\sqrt[3]{py^6 + qy^5 + ry^4 + sy^3 + ty^2 + uy + v}} dy

#fold2 with 2 parts - doesn't look good

#fold2 \sqrt[30] {\discrim(a,b,c,d,e,f,g)} $ \int_{C} \frac 1 {\sqrt[3]{ax^6 + bx^5 + cx^4 + dx^3 + ex^2 + fx + g}} dx = $$ \sqrt[30] {\discrim(p,q,r,s,t,u,v)} $ \int_{C'} \frac 1 {\sqrt[3]{py^6 + qy^5 + ry^4 + sy^3 + ty^2 + uy + v}} dy

#fold2 with 3 parts - doesn't look good

#fold2 \beta \space = \space \zeta^i \alpha, \quad$ \frac 1 {\zeta^i \alpha}, \quad$ \zeta^j \frac {1 - \zeta^i\alpha} {1 + \zeta^i\alpha} $$ \qquad \textsf{where} \qquad $$ i=0\ldots 3, \enspace j=0 \ldots 3

train

#train,width=1200,flow,fold

#train,width=1200,flow,fold \small{\begin{vmatrix} a & b & c \\ p & q & r \\ q & r & s \\ \end{vmatrix}} $ = $ a(qs - r^2) + b(qr - ps) + $ c(pr - q^2) $$ = $ - \tfrac 1 {18} ap^2\big[ $ (\alpha - \mu)(\beta - \mu)(\nu - \omega)^2 + $ (\alpha - \nu)(\beta - \nu)(\mu - \omega)^2 + $ (\alpha - \omega)(\beta - \omega)(\mu - \nu)^2\big]

#train,width=1200,flow,fold=430

#train,width=1200,flow,fold=430 \small{\begin{vmatrix} a & b & c \\ p & q & r \\ q & r & s \\ \end{vmatrix}} $ = $ a(qs - r^2) + b(qr - ps) + c(pr - q^2) $$ = $ - \tfrac 1 {18} ap^2\big[ $ (\alpha - \mu)(\beta - \mu)(\nu - \omega)^2 + $ (\alpha - \nu)(\beta - \nu)(\mu - \omega)^2 + $ (\alpha - \omega)(\beta - \omega)(\mu - \nu)^2\big]