TeX
$$ \def\aaa{a} \alpha \aaa $$
$$ \sqrt 2 \quad \sqrt{x + y} \quad \sqrt [ 3 ] 2 \quad \root 3^2 \of 4^5 $$
$$ \begin{pmatrix} a & b \\[0.5ex] c & d \\ \end{pmatrix} $$
$$ \left\langle a \over b \middle| c \over d \right\rangle $$
$$ { a \over^2 b } $$
$$ { a \over b \over c } $$
$$ \# \& \% \quad { a + b \over c + d} \quad \binom n 3 \quad { n+m \choose k} \quad \frac a b \quad \tfrac a b \quad \genfrac \{ \} {2pt} {0} ab \quad \genfrac \{ \} {} {1} ab \quad \genfrac \{ \} {} {2} ab \quad \genfrac \{ \} {} {3} ab \quad {a \atop b} \quad {a \brace b} \quad {a \brack b} \quad { a \above {1pt} b } $$
$$ =\not= \quad \equiv\not\equiv \quad \in\not\in \quad \ni\not\ni \quad \divides\not\divides \quad \parallel\not\parallel \quad \approx\not\approx \quad \exists\not\exists \quad \wp\not\wp \quad \alpha\not\alpha \quad \not\mathfrak R \quad \not h \quad \not H \quad 3\not 3 $$
$$ & \quad \\ \quad #1 \quad \middle | $$
$$ \genfrac . . {1pt}{0} 23 \sqrt{\smash[b] 3} $$
$$ \text{text} \textsf{text san-serif} \textit{text italic} $$
$$ \operatorname{s} s \quad \mathfrak{f} \mathfrak{\operatorname{f}} \mathbf{f} $$
$$ a / b \quad {x \mod a \over b} $$
$$ {dz} = \left({\partial F} \over {\partial y}\right)^{-1} {dx} = - \left({\partial F} \over {\partial x} \right)^{-1} {dy} $$
$$ \begin{aligned} h_3(\omega_1) \left(\frac {h_3(\omega_1)h_2} {h_1 h_3} \space + \space \frac {h_1 h_3} {h_3(\omega_1) h_2}\right) \enspace &= \enspace h_3(\omega_2) \left(\frac {h_3(\omega_2)h_1} {h_2 h_3} \space + \space \frac {h_2 h_3} {h_3(\omega_2) h_1}\right) \\\\ h_3(\omega_1)^2 h_2^2 \space + \space h_1^2 h_3^2 \enspace &= \enspace h_3(\omega_2)^2 h_1^2 \space + \space h_2^2 h_3^2 \\\\ (e_1 - e_3)(\wp - e_2) \space + \space (\wp - e_1)(\wp - e_3) \enspace &= \enspace (e_2 - e_3)(\wp - e_1) \space + \space (\wp - e_2)(\wp - e_3) \\\\ \wp^2 \space - \space 2e_3\wp \space + \space e_1e_3 + e_2e_3 - e_1e_2 \enspace &= \enspace \wp^2 \space - \space 2e_3\wp \space + \space e_1e_3 + e_2e_3 - e_1e_2 \qquad \checkmark \end{aligned} $$
$$ \sum_{\substack { m_1 \ne m_2 \mod 2 \\ [1em] \tfrac 79 \\[1em] m_1,m_2 \in Z} } $$
$ g' g'' g''' g'''' $ $ g''''' $
$$ A \hspace{-1em} A \! A \, A \> A \; A \enspace A \quad A \qquad A \hspace{4em} A $$
$$ ( \big( \Big( \bigg( \Bigg( $$
$$ \alpha\beta\gamma\delta\epsilon\zeta\eta\theta\iota\kappa\lambda\mu\nu\xi\omicron\pi\rho\sigma\tau\upsilon\psi\chi\phi\omega $$ $$ \Alpha\Beta\Gamma\Delta\Epsilon\Zeta\Eta\Theta\Iota\Kappa\Lambda\Mu\Nu\Xi\Omicron\Pi\Rho\Sigma\Tau\Upsilon\Psi\Chi\Phi\Omega $$ $$ \mathbb{0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz} $$ $$ \mathbf{0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz} $$ $$ \mathcal{0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz} $$ $$ \mathfrak{0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz} $$$$ \overline{\sum_{i=1}^n x_i} \quad \hat{\prod\limits_{i=1}^n x_i} \quad \underline{\lim_{i \rightarrow \infty} x_i} $$
$$ \begin{bmatrix} a & b \\ c & d \\ \end{bmatrix} \quad \begin {matrix} a & b \\ c & d \\ \end{matrix} \quad \begin{pmatrix} a & b \\ c & d \\ \end{pmatrix} \quad \begin{vmatrix} a & b \\ c & d \\ \end{vmatrix} \quad \begin{Vmatrix} a & b \\ c & d \\ \end{Vmatrix} $$ $$ \sqrt [2] 3 4 $$ $$ \sqrt [[2] 3 $$ $$ \sqrt [2]] 3 $$ <$$ \sqrt [2] 3 $$$$ \def \n {12} \def \d {34} \def \f#1#2{\frac #1 #2} \f \n \d X \f \n {34} X \f \n {{34}} X \f \n {\d} X \frac {\f \n \d} 5 X \frac x y^2 X {\frac x y}^2 X \frac {\f x y z} W \bar x^2 X {\bar x}^2 X \overline {x^2} X \lt^2 X \mathfrak {x^2} $$ Rules are that inbuilt functions are auto-grouped \frac x y => {\frac x y} but the macro \f{\frac x y} is spread. So when you hit a func\macro grab the next nargs using grouping. If macro the group args are spread then evaluated. But if function group args are groups.
MathML
This example demonstrates effect of font on MathML render quality.
$$ \wp^{-1}(x) = \int_{-\infty}^x {1 \over \sqrt{4x^3 - g_2x - g_3}} dx $$$$ \prod_{0 \le i,j,k,l \le 2} \begin{vmatrix} \sqrt[3]{x_1-e_1} & \phantom{\zeta^0} \sqrt[3]{x_1-e_2} & \phantom{\zeta^0} \sqrt[3]{x_1-e_3} \\ \sqrt[3]{x_2-e_1} & \zeta^i \sqrt[3]{x_2-e_2} & \zeta^j \sqrt[3]{x_2-e_3} \\[1em] \sqrt[3]{x_3-e_1} & \zeta^k \sqrt[3]{x_3-e_2} & \zeta^l \sqrt[3]{x_3-e_3} \\ \end{vmatrix} = 3^{36} \cdot \begin{vmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ \end{vmatrix}^9 \cdot \begin{vmatrix} 1 & e_1 & e_1^2 \\ 1 & e_2 & e_2^2 \\ 1 & e_3 & e_3^2 \\ \end{vmatrix}^9 \cdot \left(\left(\mathfrak{R},\left(\mathfrak{R},\mathfrak{S}\right)_2\right)_2,\left(\mathfrak{S},\left(\mathfrak{S},\mathfrak{R}\right)_2\right)_2\right)_1^3 $$
Response Math
#flow
#flow,left
#flow,indent,rowgap=1em
#flow,left,indent,fold=500
#list
fold
#fold
#fold,end
#fold
#fold2
with 2 parts - doesn't look good
#fold2
with 3 parts - doesn't look good
train
#train,width=1200,flow,fold
#train,width=1200,flow,fold=430